Molecular basis for genistein-induced inhibition of Kir2.3 currents
详细信息    查看全文
  • 作者:Zhiying Zhao (1)
    Boyi Liu (1)
    Guohong Zhang (1)
    Zhanfeng Jia (1)
    Qingzhong Jia (1)
    Xian Geng (1)
    Hailin Zhang (1)
  • 关键词:Ion channel modulation ; Inhibition ; Inward rectifier potassium channel ; Phospholipid ; Voltage clamp ; Xenopus laevis
  • 刊名:Pfl眉gers Archiv - European Journal of Physiology
  • 出版年:2008
  • 出版时间:May 2008
  • 年:2008
  • 卷:456
  • 期:2
  • 页码:413-423
  • 全文大小:732KB
  • 参考文献:1. Abraham MR, Jahangir A, Alekseev AE, Terzic A (1999) Channelopathies of inwardly rectifying potassium channels. FASEB J 13:1901-910
    2. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262:5592-595
    3. Altavilla D, Crisafulli A, Marini H, Esposito MD, Anna R, Corrado F, Bitto A, Squadrito F (2004) Cardiovascular effects of the phytoestrogen genistein. Curr Med Chem Cardiovasc Hematol Agents 2:179-86 CrossRef
    4. Altomare C, Tognati A, Bescond J, Ferroni A, Baruscotti M (2006) Direct inhibition of the pacemaker (If) current in rabbit sinoatrial node cells by genistein. Br J Pharmacol 147:36-4 CrossRef
    5. Belevych AE, Warrier S, Harvey RD (2002) Genistein inhibits cardiac L-Type Ca2+ channel activity by a tyrosine kinase-independent mechanism. Mol Pharmacol 62:554-65 CrossRef
    6. Bourgoin S, Grinstein S (1992) Peroxides of vanadate induce activation of phospholipase D in HL-60 Cells. J Biol Chem 267:11908-1916
    7. Chiang CE, Chen SA, Chang MS, Lin CI, Luk HN (1996) Genistein directly inhibits L-type calcium currents but potentiates cAMP-dependent chloride currents in cardiomyocytes. Biochem Biophys Res Commun 223:598-03 CrossRef
    8. Chiang CE, Luk HN, Chen LL, Wang TM, Ding PY (2002) Genistein inhibits the inward rectifying potassium current in guinea pig ventricular myocytes. J Biomed Sci 9:321-26 CrossRef
    9. Chuang H, Jan YN, Jan LY (1997) Regulation of IRK3 inward rectifier K+ channel by m1 acetylcholine receptor and intracellular magnesium. Cell 89:1121-132 CrossRef
    10. Collins A, German MS, Jan YN, Jan LY, Zhao B (1996) A strongly inwardly rectifying K+ channel that is sensitive to ATP. J Neurosci 16:1-
    11. Collins A, Larson M (2002) Differential sensitivity of inward rectifier K+ channels to metabolic inhibitors. J Biol Chem 277:35815-5818 CrossRef
    12. Correia MJ, Wood TG, Prusak D, Weng T, Rennie KJ, Wang HQ (2004) Molecular characterization of an inward rectifier channel (IKir) found in avian vestibular hair cells: cloning and expression of pKir2.1. Physiol Genomic / s 19:155-69 CrossRef
    13. Coulter KL, Perier F, Radeke CM, Vandenberg CA (1995) Identification and molecular localization of a pH-sensing domain for the inward rectifier potassium channel HIR. Neuron 15:1157-168 CrossRef
    14. Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T, Logothetis DE (2004) Characteristic interactions with phosphatidylinositol 4, 5-bisphosphate determine regulation of Kir channels by diverse modulators. J Biol Chem 279:37271-7281 CrossRef
    15. Gazit A, Yaish P, Gilon C, Levitzki A (1989) Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors. J Med Chem 32:2344-352 CrossRef
    16. Hashimoto N, Yamashita T, Tsuruzoe N (2006) Tertiapin, a selective IKACh blocker, terminates atrial fibrillation with selective atrial effective refractory period prolongation. Pharmacol Res 54:136-410
    17. Henry P, Pearson WL, Nichols CG (1996) Protein kinase C inhibition of cloned inward rectifier (HRK1/KIR2.3) K+ channels expressed in / Xenopus oocytes. J Physiol 495:681-88
    18. Hwang TC, Koeppe RE, Andersen OS (2003) Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics. Biochemistry 42:13646-3658 CrossRef
    19. Inanobe A, Fujita A, Ito M, Tomoike H, Inageda K, Kurachi Y (2002) Inward rectifier K+ channel Kir2.3 is localized at the postsynaptic membrane of excitatory synapses. Am J Physiol Cell Physiol 282:C1396–C1403
    20. Isomoto S, Kondo C, Kurachi Y (1997) Inwardly rectifying potassium channels: their molecular heterogeneity and function. Jpn J Physiol 47:11-9 CrossRef
    21. Jin W, Lu Z (1998) A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 37:13291-3299 CrossRef
    22. Kubo Y, Baldwin TJ, Jan YN, Jan LY (1993) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127-33 CrossRef
    23. Kurejova M, Lacinova L (2006) Effect of protein tyrosine kinase inhibitors on the current through the Ca(V)3.1 channel. Arch Biochem Biophys 446:20-7 CrossRef
    24. Lania-Pietrzak B, Hendrich AB, Zugaj J, Michalak K (2005) Metabolic O-demethylation does not alter the influence of isoflavones on the biophysical properties of membranes and MRP1-like protein transport activity. Arch Biochem Biophys 433:428-34 CrossRef
    25. Liu Y, Liu D, Heath L, Meyers DM, Krafte DS, Wagoner PK, Silvia CP, Yu W, Curran ME (2001) Direct activation of an inwardly rectifying potassium channel by arachidonic acid. Mol Pharmacol 59:1061-068
    26. Lopes CM, Zhang H, Rohacs T, Jin T, Yang J, Logothetis DE (2002) Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron 34:933-44 CrossRef
    27. Okamoto F, Okabe K, Kajiya H (2001) Genistein, a soybean isoflavone, inhibits inward rectifier K(+) channels in rat osteoclasts. Jpn J Physiol 51:501-09 CrossRef
    28. Paillart C, Carlier E, Guedin D, Dargent B, Couraud F (1997) Direct block of voltage-sensitive sodium channels by genistein, a tyrosine kinase inhibitor. J Pharmacol Exp Ther 280:521-26
    29. Perier F, Radeke CM, Vandenberg CA (1994) Primary structure and characterization of a small-conductance inwardly rectifying potassium channel from human hippocampus. Proc Natl Acad Sci USA 91:6240-244 CrossRef
    30. Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George AL Jr, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptacek LJ (2001) Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105:511-19 CrossRef
    31. Posner BI, Faure R, Burgess JW, Bevan AP, Lachance D, Zhang-Sun G, Fantus IG, Ng JB, Hall DA, Lum BS, Shaver A (1994) Peroxovanadium compounds. J Biol Chem 269:4596-604
    32. Qu Z, Zhu G, Yang Z, Cui N, Li Y, Chanchevalap S, Sulaiman S, Haynie H, Jiang C (1999) Identification of a critical motif responsible for gating of Kir2.3 channel by intracellular protons. J Biol Chem 274:13783-3789 CrossRef
    33. Ruppersberg JP (2000) Intracellular regulation of inward rectifier K+ channels. Pflugers Arch 441(1):1-1 CrossRef
    34. Teisseyre A, Michalak K (2005) Genistein inhibits the activity of kv1.3 potassium channels in human T lymphocytes. J Membr Biol 205:71-9 CrossRef
    35. Vivaudou M, Chan KW, Sui JL, Jan LY, Reuveny E, Logothetis DE (1997) Probing the G-protein regulation of GIRK1 and GIRK4, the two subunits of the KACh channel, using functional homomeric mutants. J Biol Chem 272:31553-1560 CrossRef
    36. Washizuka T, Horie M, Obayashi K, Sasayama S (1998) Genistein inhibits slow component delayed-rectifier K currents via a tyrosine kinase-independent pathway. J Mol Cell Cardiol 30:2577-590 CrossRef
    37. Weinreich F, Wood PG, Riordan JR, Nagel G (1997) Direct action of genistein on CFTR. Pflugers Arch 434:484-91 CrossRef
    38. Whaley WL, Rummel JD, Kastrapeli N (2006) Interactions of genistein and related isoflavones with lipid micelles. Langmuir 22:7175-184 CrossRef
    39. Yan DH, Nishimura K, Yoshida K, Nakahira K, Ehara T, Igarashi K, Ishihara K (2005) Different intracellular polyamine concentrations underlie the difference in the inward rectifier K(+) currents in atria and ventricles of the guinea-pig heart. J Physiol 563:713-24 CrossRef
    40. Zhang H, He C, Yan X, Mirshahi T, Logothetis DE (1999) Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat Cell Biol 1:183-88 CrossRef
    41. Zhang ZH, Wang Q (2000) Modulation of a cloned human A-type voltage-gated potassium channel (hKv1.4) by the protein tyrosine kinase inhibitor genistein. Pflugers Arch 440:784-92 CrossRef
    42. Zielonka J, Gebicki J, Grynkiwicz G (2003) Radical scavenging properties of genistein. Free Radic Biol Med 35:958-65 CrossRef
  • 作者单位:Zhiying Zhao (1)
    Boyi Liu (1)
    Guohong Zhang (1)
    Zhanfeng Jia (1)
    Qingzhong Jia (1)
    Xian Geng (1)
    Hailin Zhang (1)

    1. Department of Pharmacology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China
  • ISSN:1432-2013
文摘
Inwardly rectifying potassium channels play an important role in the maintenance of membrane potential in neurons and myocardium. Identification of functional regulation mechanisms concerning these channels may lead to the development of specific modulators for these channels. Genistein is an isoflavone with potent inhibitory activity on protein tyrosine kinase. In this study, we have found that among three members of the Kir family (Kir2.3, Kir2.1, and Kir3.4* [a highly active mutant of Kir3.4, Kir3.4-S143T]) we tested, genistein significantly inhibited Kir2.3 currents. Using the two-electrode voltage clamp technique, we have demonstrated that micromole concentrations of genistein concentration-dependently and reversibly inhibited the currents of Kir2.3 channel expressed in Xenopus oocytes with an IC50 of 16.9?±-.8?μM. Using the whole-cell patch-clamp technique, genistein also inhibited the currents of Kir2.3 channel expressed in HEK293 cells with an IC50 of 19.3?±-.2?μM. Genistein had little or no effect on Kir2.1 and Kir3.4* currents. The effect of genistein on Kir2.3 currents was not affected by vanadate, a potent protein tyrosine phosphatase inhibitor. Furthermore, the effect of genistein was not mimicked by daidzein, an inactive analogue of genistein, or another potent tyrosine kinase inhibitor, tyrphostin 23. Chimeras between Kir2.3 and Kir2.1 channels were constructed to identify molecular basis that distinguished the effect of genistein on these channels. It was found that the transmembrane domains and the pore region of Kir2.3 channel were important determinant for high sensitivity for genistein inhibition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700