Optimal inequalities for bounding Toader mean by arithmetic and quadratic means
详细信息    查看全文
文摘
In this paper, we present the best possible parameters \(\alpha(r)\) and \(\beta(r)\) such that the double inequality $$\begin{aligned} \bigl[\alpha(r)A^{r}(a,b)+ \bigl(1-\alpha(r) \bigr)Q^{r}(a,b) \bigr]^{1/r} < & TD \bigl[A(a,b), Q(a,b) \bigr] \\ < & \bigl[\beta(r)A^{r}(a,b)+ \bigl(1-\beta(r) \bigr)Q^{r}(a,b) \bigr]^{1/r} \end{aligned}$$ holds for all \(r\leq 1\) and \(a, b>0\) with \(a\neq b\), and we provide new bounds for the complete elliptic integral \(\mathcal{E}(r)=\int_{0}^{\pi/2}(1-r^{2}\sin^{2}\theta)^{1/2}\,d\theta\)\((r\in (0, \sqrt{2}/2))\) of the second kind, where \(TD(a,b)=\frac{2}{\pi}\int_{0}^{\pi/2}\sqrt{a^{2}\cos^{2}\theta+b^{2}\sin^{2}\theta}\,d\theta\), \(A(a,b)=(a+b)/2\) and \(Q(a,b)=\sqrt{(a^{2}+b^{2})/2}\) are the Toader, arithmetic, and quadratic means of a and b, respectively.Keywordsarithmetic meanToader meanquadratic meancomplete elliptic integralMSC26E601 IntroductionFor \(p\in [0, 1]\), \(q\in \mathbb{R}\) and \(a,b>0\) with \(a\neq b\), the pth generalized Seiffert mean \(S_{p}(a, b)\), qth Gini mean \(G_{q}(a, b)\), qth power mean \(M_{q}(a, b)\), qth Lehmer mean \(L_{q}(a,b)\), harmonic mean \(H(a,b)\), geometric mean \(G(a,b)\), arithmetic mean \(A(a,b)\), quadratic mean \(Q(a,b)\), Toader mean \(TD(a,b)\) [1], centroidal mean \(\overline{C}(a,b)\), contraharmonic mean \(C(a,b)\) are, respectively, defined by $$\begin{aligned}& S_{p}(a,b)= \textstyle\begin{cases} \displaystyle\frac{p(a-b)}{\arctan [2p(a-b)/(a+b) ]}, &0< p\leq 1,\\ (a+b)/2, &p=0, \end{cases}\displaystyle \\& G_{q}(a,b)= \textstyle\begin{cases} [(a^{q-1}+b^{q-1})/(a+b) ]^{1/(q-2)}, &q\neq 2,\\ (a^{a}b^{b} )^{1/(a+b)}, &q=2, \end{cases}\displaystyle \\& M_{q}(a,b)= \textstyle\begin{cases} [(a^{q}+b^{q})/2 ]^{1/q}, &q\neq 0,\\ \sqrt{ab}, &q=0, \end{cases}\displaystyle \\& L_{q}(a,b)=\frac{a^{q+1}+b^{q+1}}{a^{q}+b^{q}}, \qquad H(a,b)=\frac{2ab}{a+b},\qquad G(a,b)= \sqrt{ab}, \\& A(a,b)=\frac{a+b}{2},\qquad Q(a,b)=\sqrt{\frac{a^{2}+b^{2}}{2}}, \\& TD(a,b)=\frac{2}{\pi} \int_{0}^{{\pi}/{2}}\sqrt{a^{2} \cos^{2}{\theta}+b^{2}\sin^{2}{\theta}}\,d\theta, \\& \overline{C}(a,b)=\frac{2(a^{2}+ab+b^{2})}{3(a+b)}, \qquad C(a,b)=\frac{a^{2}+b^{2}}{a+b}. \end{aligned}$$ (1.1)It is well known that \(S_{p}(a, b)\), \(G_{q}(a, b)\), \(M_{q}(a, b)\), and \(L_{q}(a,b)\) are continuous and strictly increasing with respect to \(p\in [0, 1]\) and \(q\in \mathbb{R}\) for fixed \(a, b>0\) with \(a\neq b\), and the inequalities $$\begin{aligned} H(a,b)&=M_{-1}(a,b)=L_{-1}(a,b)< G(a,b)=M_{0}(a,b)=L_{-1/2}(a,b) \\ & < A(a,b)=M_{1}(a,b)=L_{0}(a,b)< TD(a,b)< \overline{C}(a,b) \\ &< Q(a,b)=M_{2}(a,b)< C(a,b)=L_{1}(a,b) \end{aligned}$$ hold for all \(a, b>0\) with \(a\neq b\).The Toader mean \(TD(a,b)\) has been well known in the mathematical literature for many years, it satisfies $$ TD(a,b)=R_{E} \bigl(a^{2}, b^{2} \bigr), $$ where $$ R_{E}(a,b)=\frac{1}{\pi} \int_{0}^{\infty}\frac{[a(t+b)+b(t+a)]t}{(t+a)^{3/2}(t+b)^{3/2}}\,dt $$ stands for the symmetric complete elliptic integral of the second kind (see [2–4]), therefore it cannot be expressed in terms of the elementary transcendental functions.Let \(r\in (0, 1)\), \(\mathcal{K}(r)=\int _{0}^{\pi/2}(1-r^{2}\sin^{2}\theta)^{-1/2}\,d\theta\) and \(\mathcal{E}(r)=\int _{0}^{\pi/2}(1-r^{2}\sin^{2}\theta)^{1/2}\,d\theta\) be, respectively, the complete elliptic integrals of the first and second kind. Then \(\mathcal{K}(0^{+})=\mathcal{E}(0^{+})=\pi/2\), \(\mathcal{K}(r)\), and \(\mathcal{E}(r)\) satisfy the derivatives formulas (see [5], Appendix E, p.474-475) $$\begin{aligned}& \frac{d\mathcal{K}(r)}{dr}=\frac{\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r)}{r(1-r^{2})}, \qquad \frac{d\mathcal{E}(r)}{dr}=\frac{\mathcal{E}(r)-\mathcal{K}(r)}{r}, \\& \frac{d[\mathcal{K}(r)-\mathcal{E}(r)]}{dr}=\frac{r\mathcal{E}(r)}{1-r^{2}}, \end{aligned}$$ the values \(\mathcal{K}(\sqrt{2}/2)\) and \(\mathcal{E}(\sqrt{2}/2)\) can be expressed as (see [6], Theorem 1.7) $$ \mathcal{K} \biggl(\frac{\sqrt{2}}{2} \biggr)=\frac{\Gamma^{2} ({1}/{4} )}{4\sqrt{\pi}}=1.854\ldots, \qquad \mathcal{E} \biggl(\frac{\sqrt{2}}{2} \biggr)=\frac{4\Gamma^{2} ({3}/{4} )+\Gamma^{2} ({1}/{4} )}{8\sqrt{\pi}}=1.350 \ldots, $$ where \(\Gamma(x)=\int_{0}^{\infty}t^{x-1}e^{-t}\,dt(\operatorname{Re}{x}>0)\) is the Euler gamma function, and the Toader mean \(TD(a,b)\) can be rewritten as $$ TD(a,b)= \textstyle\begin{cases} {2a}\mathcal{E} (\sqrt{1- ({b}/{a} )^{2}} )/\pi, \quad a\geq b,\\ {2b}\mathcal{E} (\sqrt{1- ({a}/{b} )^{2}} )/\pi, \quad a< b. \end{cases} $$ (1.2)Recently, the Toader mean \(TD(a,b)\) has been the subject of intensive research. Vuorinen [7] conjectured that the inequality $$ TD(a,b)>M_{3/2}(a,b) $$ holds for all \(a, b>0\) with \(a\neq b\). This conjecture was proved by Qiu and Shen [8], and Barnard, Pearce and Richards [9], respectively.Alzer and Qiu [10] presented a best possible upper power mean bound for the Toader mean as follows: $$ TD(a,b)< M_{\log 2/(\log\pi-\log 2)}(a,b) $$ for all \(a, b>0\) with \(a\neq b\).Neuman [2], and Kazi and Neuman [3] proved that the inequalities $$\begin{aligned}& \frac{(a+b)\sqrt{ab}-ab}{AGM(a,b)}< TD(a,b)< \frac{4(a+b)\sqrt{ab}+(a-b)^{2}}{8AGM(a,b)}, \\& TD(a,b)< \frac{1}{4} \bigl(\sqrt{(2+\sqrt{2})a^{2}+(2- \sqrt{2})b^{2}}+\sqrt{(2+\sqrt{2})b^{2}+(2- \sqrt{2})a^{2}} \bigr) \end{aligned}$$ hold for all \(a, b>0\) with \(a\neq b\), where \(AGM(a,b)\) is the arithmetic-geometric mean of a and b.In [11–13], the authors presented the best possible parameters \(\lambda_{1}, \mu_{1}\in [0, 1]\) and \(\lambda_{2}, \mu_{2}, \lambda_{3}, \mu_{3}\in \mathbb{R}\) such that the double inequalities \(S_{\lambda_{1}}(a,b)< TD(a,b)< S_{\mu_{1}}(a,b)\), \(G_{\lambda_{2}}(a,b)< TD(a,b)< G_{\mu_{2}}(a,b)\) and \(L_{\lambda_{3}}(a,b)< TD(a,b)< L_{\mu_{3}}(a,b)\) hold for all \(a, b>0\) with \(a\neq b\).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700