Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)
详细信息    查看全文
  • 作者:Ray Ming (1) (2)
    Robert VanBuren (2)
    Yanling Liu (1)
    Mei Yang (1)
    Yuepeng Han (1)
    Lei-Ting Li (2) (3)
    Qiong Zhang (1) (2)
    Min-Jeong Kim (4)
    Michael C Schatz (5)
    Michael Campbell (6)
    Jingping Li (7)
    John E Bowers (8)
    Haibao Tang (9)
    Eric Lyons (10)
    Ann A Ferguson (11)
    Giuseppe Narzisi (5)
    David R Nelson (12)
    Crysten E Blaby-Haas (13)
    Andrea R Gschwend (2)
    Yuannian Jiao (14) (7)
    Joshua P Der (14)
    Fanchang Zeng (2)
    Jennifer Han (2)
    Xiang Jia Min (15)
    Karen A Hudson (16)
    Ratnesh Singh (17)
    Aleel K Grennan (2)
    Steven J Karpowicz (18)
    Jennifer R Watling (19)
    Kikukatsu Ito (20)
    Sharon A Robinson (21)
    Matthew E Hudson (22)
    Qingyi Yu (17)
    Todd C Mockler (23)
    Andrew Carroll (24)
    Yun Zheng (25)
    Ramanjulu Sunkar (26)
    Ruizong Jia (27)
    Nancy Chen (28)
    Jie Arro (2)
    Ching Man Wai (2)
    Eric Wafula (14)
    Ashley Spence (2)
    Yanni Han (1)
    Liming Xu (1)
    Jisen Zhang (29)
    Rhiannon Peery (2)
    Miranda J Haus (2)
    Wenwei Xiong (30)
    James A Walsh (2)
    Jun Wu (3)
    Ming-Li Wang (27)
    Yun J Zhu (27) (31)
    Robert E Paull (28)
    Anne B Britt (32)
    Chunguang Du (30)
    Stephen R Downie (2)
    Mary A Schuler (2) (33)
    Todd P Michael (34)
    Steve P Long (2)
    Donald R Ort (2) (35)
    J William Schopf (36)
    David R Gang (4)
    Ning Jiang (11)
    Mark Yandell (6)
    Claude W dePamphilis (14)
    Sabeeha S Merchant (13)
    Andrew H Paterson (7)
    Bob B Buchanan (37)
    Shaohua Li (1)
    Jane Shen-Miller (36)
  • 刊名:Genome Biology
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:14
  • 期:5
  • 全文大小:637 KB
  • 参考文献:1. Shen-Miller J: Sacred lotus, the long-living fruits of China Antique. / Seed Sci Res 2002, 12:131-43. CrossRef
    2. Shen-Miller J, Schopf JW, Harbottle G, Cao RJ, Ouyang S, Zhou KS, Southon JR, Liu GH: Long-living lotus: germination and soil g-irradiation of centuries-old fruits, and cultivation, growth, and phenotypic abnormalities of offspring. / Am J Bot 2002, 89:236-47. CrossRef
    3. Duke JA, Bogenschutz-Godwin MJ, duCellier J, Duke AK: / Handbook of Medicinal Herbs. 2002. Boca Raton: CRC Press CrossRef
    4. Diao Y, Chen L, Yang G, Zhou M, Song Y, Hu Z, Lin JY: Nuclear DNA C-values in 12 species in Nymphaeales. / Caryologia 2006, 59:25-0.
    5. Yang M, Han Y, VanBuren R, Ming R, Xu L, Han Y, Liu Y: Genetic linkage maps for Asian and American lotus constructed using novel SSR markers derived from the genome of sequenced cultivar. / BMC Genomics 2012, 13:653. CrossRef
    6. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang ML, Zhu YJ, / et al.: The draft genome of the transgenic tropical fruit tree papaya ( Carica papaya Linnaeus). / Nature 2008, 452:991-96. CrossRef
    7. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, / et al.: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. / Nature 2007, 449:463-67. CrossRef
    8. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, / et al.: The Sorghum bicolor genome and the diversification of grasses. / Nature 2009, 457:551-56. CrossRef
    9. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, / et al.: The B73 maize genome: complexity, diversity, and dynamics. / Science 2009, 326:1112-115. CrossRef
    10. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, / et al.: Genome sequence of the palaeopolyploid soybean. / Nature 2010, 463:178-83. CrossRef
    11. Jiang N, Bao Z, Zhang X, Eddy S-R, Wessler S-R: Pack-MULE transposable elements mediate gene evolution in plants. / Nature 2007, 431:569-73. CrossRef
    12. Parra G, Bradnam K, Korf I: CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. / Bioinformatics 2007, 23:1061-067. CrossRef
    13. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ: Proteinortho: Detection of (Co-)orthologs in large-scale analysis. / BMC Bioinformatics 2011, 12:124. CrossRef
    14. Paterson AH, Freeling M, Tang H, Wang X: Insights from the comparison of plant genome sequences. / Annu Rev Plant Biol 2010, 61:349-72. CrossRef
    15. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS: Polyploidy and angiosperm diversification. / Am J Bot 2009, 96:336-48. CrossRef
    16. Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH: Synteny and collinearity in plant genomes. / Science 2008, 320:486-88. CrossRef
    17. Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH: Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. / Genome Res 2008, 18:1944-954. CrossRef
    18. The Arabidopsis Genome Initiative: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . / Nature 2000, 408:796-15. CrossRef
    19. International Rice Genome Sequencing Project: The map-based sequence of the rice genome. / Nature 2005, 436:793-00. CrossRef
    20. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, / et al.: The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). / Science 2006, 313:1596-604. CrossRef
    21. Moore M, Soltis PS, Bell CD, Burleigh JG, Soltis DE: Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. / Proc Natl Acad Sci USA 2010, 107:4623-628. CrossRef
    22. Hedges SB, Dudley J, Kumar S: TimeTree: a public knowledge-base of divergence times among organisms. / Bioinformatics 2006, 22:2971-972. CrossRef
    23. Sanderson MJ: r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. / Bioinformatics 2003, 19:301-02. CrossRef
    24. Wolfe KH, Sharp PM, Li WH: Rates of synonymous substitution in plant nuclear genes. / J Mol Evol 1989, 29:208-11. CrossRef
    25. Fawcett JA, Maere S, van de Peer Y: Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. / Proc Natl Acad Sci USA 2009, 106:5737-742. CrossRef
    26. Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, McNeal J, Rolf M, Ruzicka DR, Wafula E, Wickett NJ, Wu X, Zhang Y, Wang J, Zhang Y, Carpenter EJ, Deyholos MK, Kutchan TM, Chanderbali AS, Soltis PS, Stevenson DW, McCombie R, Pires JC, Wong GK, Soltis DE, dePamphilis CW: A genome triplication associated with early diversification of the core eudicots. / Genome Biol 2012, 13:R3. CrossRef
    27. Li W-X, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK: The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post transcriptionally to promote drought resistance. / Plant Cell 2008, 20:2238-251. CrossRef
    28. Pires N, Dolan L: Origin and diversification of basic-helix-loop-helix proteins in plants. / Mol Biol Evol 2010, 27:862-74. CrossRef
    29. Vekemans D, Proost S, Vanneste K, Coenen H, Viaene T, Ruelens P, Maere S, van de Peer Y, Geuten K: Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification. / Mol Biol Evol 2012, 29:3793-806. CrossRef
    30. Lyons E, Pedersen B, Kane J, Freeling M: The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates the rosids. / Tropical Plant Biol 2008, (1):181-90.
    31. Tang H, Woodhouse MR, Cheng F, Schnable JC, Pedersen BS, Conant G, Wang X, Freeling M, Pires JC: Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. / Genetics 2012, 90:1563-574. CrossRef
    32. Lynch M, Force AG: The origin of interspecific genomic incompatibility via gene duplication. / Am Nat 2000, 156:590-05. CrossRef
    33. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, / et al.: The genome of the mesopolyploid crop species Brassica rapa . / Nat Genet 2011, 43:1035-039. CrossRef
  • 作者单位:Ray Ming (1) (2)
    Robert VanBuren (2)
    Yanling Liu (1)
    Mei Yang (1)
    Yuepeng Han (1)
    Lei-Ting Li (2) (3)
    Qiong Zhang (1) (2)
    Min-Jeong Kim (4)
    Michael C Schatz (5)
    Michael Campbell (6)
    Jingping Li (7)
    John E Bowers (8)
    Haibao Tang (9)
    Eric Lyons (10)
    Ann A Ferguson (11)
    Giuseppe Narzisi (5)
    David R Nelson (12)
    Crysten E Blaby-Haas (13)
    Andrea R Gschwend (2)
    Yuannian Jiao (14) (7)
    Joshua P Der (14)
    Fanchang Zeng (2)
    Jennifer Han (2)
    Xiang Jia Min (15)
    Karen A Hudson (16)
    Ratnesh Singh (17)
    Aleel K Grennan (2)
    Steven J Karpowicz (18)
    Jennifer R Watling (19)
    Kikukatsu Ito (20)
    Sharon A Robinson (21)
    Matthew E Hudson (22)
    Qingyi Yu (17)
    Todd C Mockler (23)
    Andrew Carroll (24)
    Yun Zheng (25)
    Ramanjulu Sunkar (26)
    Ruizong Jia (27)
    Nancy Chen (28)
    Jie Arro (2)
    Ching Man Wai (2)
    Eric Wafula (14)
    Ashley Spence (2)
    Yanni Han (1)
    Liming Xu (1)
    Jisen Zhang (29)
    Rhiannon Peery (2)
    Miranda J Haus (2)
    Wenwei Xiong (30)
    James A Walsh (2)
    Jun Wu (3)
    Ming-Li Wang (27)
    Yun J Zhu (27) (31)
    Robert E Paull (28)
    Anne B Britt (32)
    Chunguang Du (30)
    Stephen R Downie (2)
    Mary A Schuler (2) (33)
    Todd P Michael (34)
    Steve P Long (2)
    Donald R Ort (2) (35)
    J William Schopf (36)
    David R Gang (4)
    Ning Jiang (11)
    Mark Yandell (6)
    Claude W dePamphilis (14)
    Sabeeha S Merchant (13)
    Andrew H Paterson (7)
    Bob B Buchanan (37)
    Shaohua Li (1)
    Jane Shen-Miller (36)

    1. Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo Road, Wuhan, 430074, China
    2. Department of Plant Biology, University of Illinois at Urbana-Champaign, 1201 West Gregory Drive, Urbana, IL, 61801, USA
    3. College of Horticulture, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
    4. Institute of Biological Chemistry, Washington State University, Clark Hall, 100 Dairy Road, Pullman, WA, 99164, USA
    5. Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY, 11724, USA
    6. Eccles Institute of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
    7. Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
    8. Department of Crop and Soil Sciences, University of Georgia, 120 Carlton Street, Athens, GA, 30602, USA
    9. J Craig Venter Institute, 9704 Medical Center Drive, 20850, Rockville, MD, USA
    10. School of Plant Sciences, iPlant Collaborative Bio5 Institute, University of Arizona, 1657 East Helen Street, Tucson, AZ, 85745, USA
    11. Department of Horticulture, Michigan State University, A288 Plant and Soil Sciences Building, 1066 Bogue Street, East Lansing, MI, 48824, USA
    12. Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue Suite G01, Memphis, TN, 38163, USA
    13. Department of Chemistry and Biochemistry and Institute for Genomics and Proteomics, University of California, Los Angeles, 607 Charles E Young Drive East, CA, 90095, USA
    14. Department of Biology and Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, 201 Life Sciences Building, University Park, PA, 16802, USA
    15. Center for Applied Chemical Biology, Department of Biological Sciences, Youngstown State University, 1 University Plaza, Youngstown, OH, 44555, USA
    16. USDA-ARS, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA
    17. Texas A&M AgriLife Research, Department of Plant Pathology & Microbiology, Texas A&M University System, 17360 Coit Road, Dallas, TX, 75252, USA
    18. Department of Biology, University of Central Oklahoma, 100 North University Drive, Edmond, OK, 73034, USA
    19. School of Earth and Environmental Sciences, University of Adelaide, North Terrace, Adelaide, 5005, Australia
    20. Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate, 020-8550, Japan
    21. Institute for Conservation Biology, The University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
    22. Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Drive, Urbana, IL, 61801, USA
    23. Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
    24. Lawrence Berkeley National Laboratory, 1 Cyclotron Road Berkeley, Emeryville, CA, 94720, USA
    25. Institute of Developmental Biology and Molecular Medicine & School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
    26. Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA
    27. Hawaii Agriculture Research Center, 94-340 Kunia Road, Waipahu, HI, 96797, USA
    28. Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, 3190 Maile Way, Honolulu, HI, 96822, USA
    29. Fujian Normal University, Qishan Campus, Minhou, Fuzhou, 350117, China
    30. Department of Biology and Molecular Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA
    31. Institute of Tropical Biosciences and Biotechnology, China Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, Hainan, 571101, China
    32. Department of Plant and Microbial Biology, University of California, 1 Shields Avenue, Davis, CA, 95161, USA
    33. Department of Cell and Developmental Biology, University of Illinois, 1201 West Gregory Drive, Urbana, IL, 61801, USA
    34. The Genome Analysis Center, Monsanto, St Louis, MO, 63167, USA
    35. Global Change and Photosynthesis Research Unit, Agricultural Research Service, United States Department of Agriculture, 1206 West Gregory Drive, Urbana, IL, USA
    36. IGPP Center for the Study of Evolution and Origin of Life, Geology Building, Room 5676, University of California, Los Angeles, 595 Charles E Young Drive East, Los Angeles, CA, 90095-1567, USA
    37. Department of Plant and Microbial Biology, University of California, 411 Koshland Hall, Berkeley, CA, 94720, USA
  • ISSN:1465-6906
文摘
Background Sacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan. Results The genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101× and 5.2×. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment. Conclusions The slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700