Study of GOLPH3: a Potential Stress-Inducible Protein from Golgi Apparatus
详细信息    查看全文
  • 作者:Ting Li (1)
    Hong You (1)
    Jie Zhang (1)
    Xiaoye Mo (2)
    Wenfang He (3)
    Yang Chen (1)
    Xiangqi Tang (1)
    Zheng Jiang (1)
    Ranran Tu (1)
    Liuwang Zeng (1)
    Wei Lu (1)
    Zhiping Hu (1)
  • 关键词:GOLPH3 ; Golgi apparatus ; mTOR ; Stress ; Receptor ; PI4P
  • 刊名:Molecular Neurobiology
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:49
  • 期:3
  • 页码:1449-1459
  • 全文大小:
  • 参考文献:1. Slusarewicz P, Nilsson T, Hui N, Watson R, Warren G (1994) Isolation of a matrix that binds medial Golgi enzymes. J Cell Biol 124(4):405-13
    2. De Matteis MA, Luini A (2008) Exiting the Golgi complex. Nat Rev Mol Cell Biol 9(4):273-84
    3. Wilson C, Venditti R, Rega LR, Colanzi A, D’Angelo G, De Matteis MA (2011) The Golgi apparatus: an organelle with multiple complex functions. Biochem J 433(1):1-
    4. Wei JH, Seemann J (2009) Mitotic division of the mammalian Golgi apparatus. Semin Cell Dev Biol 20(7):810-16
    5. Hicks SW, Machamer CE (2005) Golgi structure in stress sensing and apoptosis. Biochim Biophys Acta 1744(3):406-14
    6. Dippold HC, Ng MM, Farber-Katz SE, Lee SK, Kerr ML, Peterman MC et al (2009) GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139(2):337-51
    7. Gillingham AK, Munro S (2003) Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta 1641(2-):71-5
    8. Wu CC, Taylor RS, Lane DR, Ladinsky MS, Weisz JA, Howell KE (2000) GMx33: a novel family of trans-Golgi proteins identified by proteomics. Traffic 1(12):963-75
    9. Bell AW, Ward MA, Blackstock WP, Freeman HN, Choudhary JS, Lewis AP et al (2001) Proteomics characterization of abundant Golgi membrane proteins. J Biol Chem 276(7):5152-165
    10. Ng MM, Dippold HC, Buschman MD, Noakes CJ, Field SJ (2013) GOLPH3L antagonizes GOLPH3 to determine Golgi morphology. Mol Biol Cell 24(6):796-08
    11. Snyder CM, Mardones GA, Ladinsky MS, Howell KE (2006) GMx33 associates with the trans-Golgi matrix in a dynamic manner and sorts within tubules exiting the Golgi. Mol Biol Cell 17(1):511-24
    12. Scott KL, Chin L (2010) Signaling from the Golgi: mechanisms and models for Golgi phosphoprotein 3-mediated oncogenesis. Clin Cancer Res 16(8):2229-234
    13. Nakashima-Kamimura N, Asoh S, Ishibashi Y, Mukai Y, Shidara Y, Oda H et al (2005) MIDAS/GPP34, a nuclear gene product, regulates total mitochondrial mass in response to mitochondrial dysfunction. J Cell Sci 118(Pt 22):5357-367
    14. Nagano-Ito M, Yoshikawa S, Tamura M, Tsurumaki M, Ichikawa S (2007) Identification and characterization of a novel alternative splice variant of mouse GMx33alpha/GPP34. Gene 400(1-):82-8
    15. Scott KL, Kabbarah O, Liang MC, Ivanova E, Anagnostou V, Wu J et al (2009) GOLPH3 modulates mTOR signalling and rapamycin sensitivity in cancer. Nature 459(7250):1085-090
    16. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471-84
    17. Bonangelino CJ, Chavez EM, Bonifacino JS (2002) Genomic screen for vacuolar protein sorting genes in / Saccharomyces cerevisiae. Mol Biol Cell 13(7):2486-501
    18. Aronova S, Wedaman K, Anderson S, Yates J 3rd, Powers T (2007) Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in / Saccharomyces cerevisiae. Mol Biol Cell 18(8):2779-794
    19. Schmitz KR, Liu J, Li S, Setty TG, Wood CS, Burd CG et al (2008) Golgi localization of glycosyltransferases requires a Vps74p oligomer. Dev Cell 14(4):523-34
    20. Wood CS, Schmitz KR, Bessman NJ, Setty TG, Ferguson KM, Burd CG (2009) PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J Cell Biol 187(7):967-75
    21. Chang WL, Chang CW, Chang YY, Sung HH, Lin MD, Chang SC et al (2013) The / Drosophila GOLPH3 homolog regulates the biosynthesis of heparan sulfate proteoglycans by modulating the retrograde trafficking of exostosins. Development 140(13):2798-807
    22. Klute MJ, Melancon P, Dacks JB (2011) Evolution and diversity of the Golgi. Cold Spring Harb Perspect Biol 3(8):a007849
    23. Papanikou E, Glick BS (2009) The yeast Golgi apparatus: insights and mysteries. FEBS Lett 583(23):3746-751
    24. Di Fiore PP, De Camilli P (2001) Endocytosis and signaling. an inseparable partnership. Cell 106(1):1-
    25. Sannerud R, Saraste J, Goud B (2003) Retrograde traffic in the biosynthetic-secretory route: pathways and machinery. Curr Opin Cell Biol 15(4):438-45
    26. Kristen U, Lockhausen J (1983) Estimation of Golgi membrane flow rates in ovary glands of aptenia cordifolia using cytochalasin B. Eur J Cell Biol 29(2):262-67
    27. Glick BS (2000) Organization of the Golgi apparatus. Curr Opin Cell Biol 12(4):450-56
    28. Mellman I, Warren G (2000) The road taken: past and future foundations of membrane traffic. Cell 100(1):99-12
    29. Pelham HR, Rothman JE (2000) The debate about transport in the Golgi—two sides of the same coin? Cell 102(6):713-19
    30. Subramaniam VN, Krijnse-Locker J, Tang BL, Ericsson M, Yusoff AR, Griffiths G et al (1995) Monoclonal antibody HFD9 identifies a novel 28?kDa integral membrane protein on the cis-Golgi. J Cell Sci 108(Pt 6):2405-414
    31. Barr FA, Puype M, Vandekerckhove J, Warren G (1997) GRASP65, a protein involved in the stacking of Golgi cisternae. Cell 91(2):253-62
    32. Sonnichsen B, Lowe M, Levine T, Jamsa E, Dirac-Svejstrup B, Warren G (1998) A role for giantin in docking COPI vesicles to Golgi membranes. J Cell Biol 140(5):1013-021
    33. Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P et al (1995) Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131(6 Pt 2):1715-726
    34. Wong K, Meyers R, Cantley LC (1997) Subcellular locations of phosphatidylinositol 4-kinase isoforms. J Biol Chem 272(20):13236-3241
    35. Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS et al (2004) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6(5):393-04
    36. D’Angelo G, Vicinanza M, Di Campli A, De Matteis MA (2008) The multiple roles of PtdIns(4)P—not just the precursor of PtdIns(4,5)P2. J Cell Sci 121(Pt 12):1955-963
    37. Wong K, Cantley LC (1994) Cloning and characterization of a human phosphatidylinositol 4-kinase. J Biol Chem 269(46):28878-8884
    38. Graham TR, Burd CG (2011) Coordination of Golgi functions by phosphatidylinositol 4-kinases. Trends Cell Biol 21(2):113-21
    39. Santiago-Tirado FH, Bretscher A (2011) Membrane-trafficking sorting hubs: cooperation between PI4P and small GTPases at the trans-Golgi network. Trends Cell Biol 21(9):515-25
    40. Cheong FY, Sharma V, Blagoveshchenskaya A, Oorschot VM, Brankatschk B, Klumperman J et al (2010) Spatial regulation of Golgi phosphatidylinositol-4-phosphate is required for enzyme localization and glycosylation fidelity. Traffic 11(9):1180-190
    41. Strahl T, Hama H, DeWald DB, Thorner J (2005) Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J Cell Biol 171(6):967-79
    42. Im YJ, Raychaudhuri S, Prinz WA, Hurley JH (2005) Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature 437(7055):154-58
    43. Raychaudhuri S, Prinz WA (2006) Uptake and trafficking of exogenous sterols in / Saccharomyces cerevisiae. Biochem Soc Trans 34(Pt 3):359-62
    44. Halter D, Neumann S, van Dijk SM, Wolthoorn J, de Maziere AM, Vieira OV et al (2007) Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 179(1):101-15
    45. D’Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A et al (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449(7158):62-7
    46. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M et al (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426(6968):803-09
    47. Kavran JM, Klein DE, Lee A, Falasca M, Isakoff SJ, Skolnik EY et al (1998) Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem 273(46):30497-0508
    48. Stevenson JM, Perera IY, Boss WF (1998) A phosphatidylinositol 4-kinase pleckstrin homology domain that binds phosphatidylinositol 4-monophosphate. J Biol Chem 273(35):22761-2767
    49. Audhya A, Foti M, Emr SD (2000) Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol Biol Cell 11(8):2673-689
    50. Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB (1999) Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast / Saccharomyces cerevisiae. J Biol Chem 274(48):34294-4300
    51. Tu L, Tai WC, Chen L, Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321(5887):404-07
    52. Verhoeven K, De Jonghe P, Coen K, Verpoorten N, Auer-Grumbach M, Kwon JM et al (2003) Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am J Hum Genet 72(3):722-27
    53. Burd CG (2011) Physiology and pathology of endosome-to-Golgi retrograde sorting. Traffic 12(8):948-55
    54. Stanley P (2011) Golgi glycosylation. Cold Spring Harb Perspect Biol. 3(4)
    55. Opat AS, van Vliet C, Gleeson PA (2001) Trafficking and localisation of resident Golgi glycosylation enzymes. Biochimie 83(8):763-73
    56. Petrosyan A, Ali MF, Cheng PW (2012) Glycosyltransferase-specific Golgi-targeting mechanisms. J Biol Chem 287(45):37621-7627
    57. Ali MF, Chachadi VB, Petrosyan A, Cheng PW (2012) Golgi phosphoprotein 3 determines cell binding properties under dynamic flow by controlling Golgi localization of core 2 N-acetylglucosaminyltransferase 1. J Biol Chem 287(47):39564-9577
    58. Berninsone PM, Hirschberg CB (2000) Nucleotide sugar transporters of the Golgi apparatus. Curr Opin Struct Biol 10(5):542-47
    59. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(Database issue):D233–D238
    60. Kitazume S, Oka R, Ogawa K, Futakawa S, Hagiwara Y, Takikawa H et al (2009) Molecular insights into beta-galactoside alpha2,6-sialyltransferase secretion in vivo. Glycobiology 19(5):479-87
    61. Shifley ET, Cole SE (2008) Lunatic fringe protein processing by proprotein convertases may contribute to the short protein half-life in the segmentation clock. Biochim Biophys Acta 1783(12):2384-390
    62. Tu L, Chen L, Banfield DK (2012) A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer. Traffic 13(11):1496-507
    63. Wood CS, Hung CS, Huoh YS, Mousley CJ, Stefan CJ, Bankaitis V et al (2012) Local control of phosphatidylinositol 4-phosphate signaling in the Golgi apparatus by Vps74 and Sac1 phosphoinositide phosphatase. Mol Biol Cell 23(13):2527-536
    64. Kunigou O, Nagao H, Kawabata N, Ishidou Y, Nagano S, Maeda S et al (2011) Role of GOLPH3 and GOLPH3L in the proliferation of human rhabdomyosarcoma. Oncol Rep 26(5):1337-342
    65. Cummings RD, Soderquist AM, Carpenter G (1985) The oligosaccharide moieties of the epidermal growth factor receptor in A-431 cells. Presence of complex-type N-linked chains that contain terminal N-acetylgalactosamine residues. J Biol Chem 260(22):11944-1952
    66. Soderquist AM, Carpenter G (1984) Glycosylation of the epidermal growth factor receptor in A-431 cells. The contribution of carbohydrate to receptor function. J Biol Chem 259(20):12586-2594
    67. Gamou S, Shimizu N (1988) Glycosylation of the epidermal growth factor receptor and its relationship to membrane transport and ligand binding. J Biochem 104(3):388-96
    68. Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M et al (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306(5693):120-24
    69. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261-274
    70. Yang Q, Guan KL (2007) Expanding mTOR signaling. Cell Res 17(8):666-81
    71. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9-2
    72. Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103(2):253-62
    73. Shah OJ, Anthony JC, Kimball SR, Jefferson LS (2000) 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab 279(4):E715–E729
    74. Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165(1):123-33
    75. Seaman MN (2005) Recycle your receptors with retromer. Trends Cell Biol 15(2):68-5
    76. Haft CR, de la Luz Sierra M, Bafford R, Lesniak MA, Barr VA, Taylor SI (2000) Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol Biol Cell 11(12):4105-116
    77. Xie MW, Jin F, Hwang H, Hwang S, Anand V, Duncan MC et al (2005) Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. Proc Natl Acad Sci U S A 102(20):7215-220
    78. Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E (2000) Genetic and biochemical characterization of dTOR, the / Drosophila homolog of the target of rapamycin. Genes Dev 14(21):2689-694
    79. Takahashi M, Tsuda T, Ikeda Y, Honke K, Taniguchi N (2004) Role of N-glycans in growth factor signaling. Glycoconj J 20(3):207-12
    80. Zhou J, Xu T, Qin R, Yan Y, Chen C, Chen Y et al (2012) Overexpression of Golgi phosphoprotein-3 (GOLPH3) in glioblastoma multiforme is associated with worse prognosis. J Neuro Oncol 110(2):195-03
    81. Li H, Guo L, Chen SW, Zhao XH, Zhuang SM, Wang LP et al (2012) GOLPH3 overexpression correlates with tumor progression and poor prognosis in patients with clinically N0 oral tongue cancer. J Transl Med 10:168
    82. Wang JH, Chen XT, Wen ZS, Zheng M, Deng JM, Wang MZ et al (2012) High expression of GOLPH3 in esophageal squamous cell carcinoma correlates with poor prognosis. PLoS One 7(10):e45622
    83. Hua X, Yu L, Pan W, Huang X, Liao Z, Xian Q et al (2012) Increased expression of Golgi phosphoprotein-3 is associated with tumor aggressiveness and poor prognosis of prostate cancer. Diagn Pathol 7:127
    84. Kepes F, Rambourg A, Satiat-Jeunemaitre B (2005) Morphodynamics of the secretory pathway. Int Rev Cytol 242:55-20
    85. Egea G, Lázaro-Diéguez F, Vilella M (2006) Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol 18(2):168-78
    86. Almeida CG, Yamada A, Tenza D, Louvard D, Raposo G, Coudrier E (2011) Myosin 1b promotes the formation of post-Golgi carriers by regulating actin assembly and membrane remodelling at the trans-Golgi network. Nat Cell Biol 13(7):779-89
    87. Lazaro-Dieguez F, Jimenez N, Barth H, Koster AJ, Renau-Piqueras J, Llopis JL et al (2006) Actin filaments are involved in the maintenance of Golgi cisternae morphology and intra-Golgi pH. Cell Motil Cytoskeleton 63(12):778-91
    88. Valderrama F, Babia T, Ayala I, Kok JW, Renau-Piqueras J, Egea G (1998) Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur J Cell Biol 76(1):9-7
    89. Valderrama F, Duran JM, Babia T, Barth H, Renau-Piqueras J, Egea G (2001) Actin microfilaments facilitate the retrograde transport from the Golgi complex to the endoplasmic reticulum in mammalian cells. Traffic 2(10):717-26
    90. Guzik-Lendrum S, Heissler SM, Billington N, Takagi Y, Yang Y, Knight PJ et al (2013) Mammalian myosin-18A, a highly divergent myosin. J Biol Chem 288(13):9532-548
    91. Tan I, Yong J, Dong JM, Lim L, Leung T (2008) A tripartite complex containing MRCK modulates lamellar actomyosin retrograde flow. Cell 135(1):123-36
    92. Hsu RM, Tsai MH, Hsieh YJ, Lyu PC, Yu JS (2010) Identification of MYO18A as a novel interacting partner of the PAK2/betaPIX/GIT1 complex and its potential function in modulating epithelial cell migration. Mol Biol Cell 21(2):287-01
    93. Lu L, Tai G, Hong W (2004) Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-Golgi network. Mol Biol Cell 15(10):4426-443
    94. Derby MC, Lieu ZZ, Brown D, Stow JL, Goud B, Gleeson PA (2007) The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure. Traffic 8(6):758-73
    95. Yoshino A, Setty SR, Poynton C, Whiteman EL, Saint-Pol A, Burd CG et al (2005) tGolgin-1 (p230, golgin-245) modulates Shiga-toxin transport to the Golgi and Golgi motility towards the microtubule-organizing centre. J Cell Sci 118(Pt 10):2279-293
    96. Puthenveedu MA, Bachert C, Puri S, Lanni F, Linstedt AD (2006) GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat Cell Biol 8(3):238-48
    97. Giussani P, Colleoni T, Brioschi L, Bassi R, Hanada K, Tettamanti G et al (2008) Ceramide traffic in C6 glioma cells: evidence for CERT-dependent and independent transport from ER to the Golgi apparatus. Biochim Biophys Acta 1781(1-):40-1
    98. Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12(4):780-94
    99. Ohta S (2003) A multi-functional organelle mitochondrion is involved in cell death, proliferation and disease. Curr Med Chem 10(23):2485-494
    100. Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26(3-):463-71
    101. Cortopassi GA, Wong A (1999) Mitochondria in organismal aging and degeneration. Biochim Biophys Acta 1410(2):183-93
    102. Melov S (2000) Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann N Y Acad Sci 908:219-25
    103. Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23(7):298-04
    104. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913-22
    105. Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G (2001) Mammalian TOR: a homeostatic ATP sensor. Science 294(5544):1102-105
    106. Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML (2001) Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes 50(2):353-60
    107. Desai BN, Myers BR, Schreiber SL (2002) FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci U S A 99(7):4319-324
    108. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748-66
    109. Salem AF, Whitaker-Menezes D, Lin Z, Martinez-Outschoorn UE, Tanowitz HB, Al-Zoubi MS et al (2012) Two-compartment tumor metabolism: autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells. Cell Cycle 11(13):2545-556
    110. Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Salem AF, Tsirigos A, Lamb R et al (2012) Mitochondria “fuel-breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle 11(23):4390-401
    111. Zhou X, Zhan W, Bian W, Hua L, Shi Q, Xie S et al (2013) GOLPH3 regulates the migration and invasion of glioma cells though RhoA. Biochem Biophys Res Commun 433(3):338-44
  • 作者单位:Ting Li (1)
    Hong You (1)
    Jie Zhang (1)
    Xiaoye Mo (2)
    Wenfang He (3)
    Yang Chen (1)
    Xiangqi Tang (1)
    Zheng Jiang (1)
    Ranran Tu (1)
    Liuwang Zeng (1)
    Wei Lu (1)
    Zhiping Hu (1)

    1. Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
    2. Department of Emergency, Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
    3. Department of Intensive Care Unit, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
  • ISSN:1559-1182
文摘
Although the Golgi apparatus has been studied extensively for over 100?years, the complex structure-function relationships have yet to be elucidated. It is well known that the Golgi complex plays an important role in the transport, processing, sorting, and targeting of numerous proteins and lipids destined for secretion, plasma membrane, and lysosomes. Increasing evidence suggests that the Golgi apparatus is a sensor and common downstream effector of stress signals in cell death pathways. It undergoes disassembly and fragmentation in several neurological disorders. Recent studies indicate that Golgi phosphoprotein 3 (GOLPH3 also known as GPP34/GMx33/MIDAS), a peripheral membrane protein of trans-Golgi network, represents an exciting new class of oncoproteins involved in cell signal transduction and is potentially mobilized by stress. In this review, we focus on the importance of GOLPH3 in vesicular trafficking, Golgi architecture maintenance, receptor sorting, protein glycosylation, and further discuss its potential in signal sensing in stress response.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700