Comprehensive analysis of expressed sequence tags from cultivated and wild radish (Raphanus spp.)
详细信息    查看全文
  • 作者:Di Shen (8) (9)
    Honghe Sun (10) (9)
    Mingyun Huang (9)
    Yi Zheng (9)
    Yang Qiu (8)
    Xixiang Li (8)
    Zhangjun Fei (11) (9)
  • 关键词:Radish ; EST ; SNP ; SSR ; Comparative analysis ; Whole genome duplication ; Phylogenetic relationship
  • 刊名:BMC Genomics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:535 KB
  • 参考文献:1. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, / et al.: Complementary DNA sequencing: expressed sequence tags and human genome project. / Science 1992, 252:1651-656. CrossRef
    2. Yang H, Kaur N, Kiriakopolos S, McCormick S: EST generation and analyses towards identifying female gametophyte-specific genes in Zea mays L. / Planta 2006, 224:1004-014. CrossRef
    3. Eswaran N, Parameswaran S, Anantharaman B, Kumar GR, Sathram B, Johnson TS: Generation of an expressed sequence tag (EST) library from salt-stressed roots of Jatrophacurcas for identification of abiotic stress-responsive genes. / Plant Biol 2012, 14:428-37. CrossRef
    4. Shi T, Huang H, Barker MS: Ancient genome duplications during the evolution of kiwifruit (Actinidia) and related Ericales. / Ann Bot 2010, 106:497-04. CrossRef
    5. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, / et al.: Ancestral polyploidy in seed plants and angiosperms. / Nature 2011, 473:97-00. CrossRef
    6. Chatzopoulou FM, Makris AM, Argiriou A, Degenhardt J, Kanellis AK: EST analysis and annotation of transcripts derived from a trichome-specific cDNA library from Salvia fruticosa . / Plant Cell Rep 2010, 29:523-34. CrossRef
    7. Büchel K, McDowell E, Nelson W, Descour A, Gershenzon J, Hilker M, Soderlund C, Gang DR, Fenning T, Meiners T: An elm EST database for identifying leaf beetle egg-induced defense genes. / BMC Genomics 2012, 13:242. CrossRef
    8. Budahn H, Peterka H, Mousa MA, Ding Y, Zhang S, Li J: Molecular mapping in oil radish ( Raphanus sativus L.) and QTL analysis of resistance against beet cyst nematode ( Heterodera schachtii ). / Theor Appl Genet 2009, 118:775-82. CrossRef
    9. Xu L, Wang L, Gong Y, Dai W, Wang Y, Zhu X, Wen T, Liu L: Genetic linkage map construction and QTL mapping of cadmium accumulation in radish ( Raphanus sativus L.). / Theor Appl Genet 2012, 125:659-70. CrossRef
    10. Shirasawa K, Shiokai S, Yamaguchi M, Kishitani S, Nishio T: Dot-blot-SNP analysis for practical plant breeding and cultivar identification in rice. / Theor Appl Genet 2006, 113:147-55. CrossRef
    11. Li F, Hasegawa Y, Saito M, Shirasawa S, Fukushima A, Ito T, Fujii H, Kishitani S, Kitashiba H, Nishio T: Extensive chromosome homoeology among Brassiceae species were revealed by comparative genetic mapping with high-density EST-based SNP markers in radish ( Raphanus sativus L.). / DNA Res 2011, 18:401-11. CrossRef
    12. Bourret V, Kent MP, Primmer CR, Vasem?gi A, Karlsson S, Hindar K, McGinnity P, Verspoor E, Bernatchez L, Lien S: SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon ( Salmosalar ). / Mol Ecol 2012, 22:532-51. CrossRef
    13. Wang S, Wang X, He Q, Liu X, Xu W, Li L, Gao J, Wang F: Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. / Plant Cell Rep 2012, 31:1437-447. CrossRef
    14. Anithakumari AM, Tang J, Van Eck HJ, Visser RG, Leunissen JA, Vosman B, van der Linden CG: A pipeline for high throughput detection and mapping of SNPs from EST databases. / Mol Breed 2010, 26:65-5. CrossRef
    15. Ersoz ES, Wright MH, Pangilinan JL, Sheehan MJ, Tobias C, Casler MD, Buckler ES, Costich DE: SNP discovery with EST and NextGen sequencing in switchgrass (Panicum virgatum L.). / PLoS One 2012, 7:e44112. CrossRef
    16. Herbst ST: / The new food lover’s companion: comprehensive definitions of nearly 6,000 food, drink, and culinary terms. Hauppauge, NY: Barron’s Educational Series; 2001. [ / Barron’s Cooking Guide]
    17. Zohary D, Hopf M: / Domestication of plants in the old world. 3rd edition. Oxford: University Press; 2000.
    18. Lewis-Jones LJ, Thorpe JP, Wallis GP: Genetic divergence in four species of the genus Raphanus : implications for the ancestry of the domestic radish R. sativus . / Biol J Linn Soc 1982, 18:35-8. CrossRef
    19. Kitamura S: Cultivars of radish and their change. In / Japanese radish. Edited by: Nishiyama I. Tokyo: Japan Society for the Promotion of Science; 1958:1-9.
    20. Kaneko Y, Kimizuka-Takagi C, Bang SW, Matsuzawa Y: Radish. In / Genome mapping and molecular breeding in plants. Edited by: Kole C. New York: Springer; 2007:141-60.
    21. Wang Y, Xu L, Chen Y, Shen H, Gong Y, Limera C, Liu L: Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to lead (Pb) stress with next generation sequencing. / PLoS One 2013, 8:e66539. CrossRef
    22. NCBI dbEST database http://www.ncbi.nlm.nih.gov/dbEST/
    23. iTAK program http://bioinfo.bti.cornell.edu/tool/itak
    24. Rood SB, Mandel R, Pharis RP: Endogenous gibberellins and shoot growth and development in Brassica napus . / Plant Physiol 1989, 89:269-73. CrossRef
    25. Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, / et al.: The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. / Plant J 2008, 53:488-04. CrossRef
    26. Tzen JTC, Huang AHC: Surface structure and properties of plant seed oil bodies. / J Cell Biol 1992, 117:327-35. CrossRef
    27. He YQ, Wu Y: Oil body biogenesis during Brassica napus embryogenesis. / J Integr Plant Biol 2009, 51:792-99. CrossRef
    28. Wang W, Gong Y, Liu L, Wang Y, Jing Z, Huang D, Wang L: Changes of sugar content and sucrose metabolizing enzyme activities during fleshy taproot development in radish ( Raphanus sativus L.). / Acta Hortic Sinica 2007, 34:1313-316.
    29. Lee T-H, Tang H, Wang X, Paterson AH: PGDD: a database of gene and genome duplication in plants. / Nucleic Acids Res 2013, 41:D1152-D1158. CrossRef
    30. Yang YW, Lai KN, Tai PY, Li WH: Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. / J Mol Evol 1999, 48:597-04. CrossRef
    31. Koch M, Haubold B, Mitchell-Olds T: Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. / Am J Bot 2001, 88:534-44. CrossRef
    32. Shirasawa K, Oyama M, Hirakawa H, Sato S, Tabata S, Fujioka T, Kimizuka-Takagi C, Sasamoto S, Watanabe A, Kato M, / et al.: An EST-SSR linkage map of Raphanus sativus and comparative genomics of the Brassicaceae. / DNA Res 2011, 18:221-32. CrossRef
    33. Guo S, Liu J, Zheng Y, Huang M, Zhang H, Gong G, He H, Ren Y, Zhong S, Fei Z, / et al.: Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. / BMC Genomics 2011, 12:454. CrossRef
    34. Shen D, Sun H, Huang M, Zheng Y, Li X, Fei Z: RadishBase: a database for genomics and genetics of radish. / Plant Cell Physiol 2013, 54:e3. CrossRef
    35. Nei M: Phylogenetic analysis in molecular evolutionary genetics. / Annu Rev Genet 1996, 30:371-03. CrossRef
    36. Tsuro M, Suwabe K, Kubo N, Matsumoto S, Hirai M: Construction of a molecular linkage map of radish ( Raphanus sativus L.), based on AFLP and Brassica-SSR markers. / Breed Sci 2005, 55:107-11. CrossRef
    37. Yamagishi H, Terachi T: Multiple origins of cultivated radishes as evidenced by a comparison of the structural variations in mitochondrial DNA of Raphanus . / Genome 2003, 46:89-4. CrossRef
    38. Yamane K, Lü N, Ohnishi O: Multiple origins and high genetic diversity of cultivated radish inferred from polymorphism in chloroplast simple sequence repeats. / Breed Sci 2009, 59:55-5. CrossRef
    39. Lü N, Yamane K, Ohnishi O: Genetic diversity of cultivated and wild radish and phylogenetic relationships among Raphanus and Brassica species revealed by the analysis of trn K/ mat K sequence. / Breed Sci 2008, 58:15-2. CrossRef
    40. NCBI UniVec database http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html
    41. SeqClean program http://sourceforge.net/projects/seqclean/
    42. Zheng Y, Zhao L, Gao J, Fei Z: iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences. / BMC Bioinformatics 2011, 12:453. CrossRef
    43. Plant specific GO slims http://www.geneontology.org/GO.slims.shtml
    44. Li L, Stoeckert CJJ, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. / Genome Res 2003, 13:2178-189. CrossRef
    45. Venn diagrams http://bioinformatics.psb.ugent.be/webtools/Venn
    46. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G: GO: TermFinder-open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. / Bioinformatics 2004, 20:3710-715. CrossRef
    47. Iseli C, Jongeneel CV, Bucher P: ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. / Proc Int Conf Intell Syst Mol Biol 1999, 138-48.
    48. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, / et al.: The genome of the mesopolyploid crop species Brassica rapa . / Nat Genet 2011, 43:1035-039. CrossRef
    49. Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, / et al.: The arabidopsis information resource (TAIR): gene structure and function annotation. / Nucleic Acids Res 2008, 36:D1009-D1014. CrossRef
    50. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL, / et al.: The draft genome of the transgenic tropical fruit tree papaya ( Carica papaya Linnaeus). / Nature 2008, 452:991-96. CrossRef
    51. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. / Nucleic Acids Res 2004, 32:1792-797. CrossRef
    52. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. / Bioinformatics 2009, 25:1972-973. CrossRef
    53. Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. / Mol Biol Evol 2007, 24:1586-591. CrossRef
    54. Wikstr?m N, Savolainen V, Chase MW: Evolution of the angiosperms: calibrating the family tree. / Proc Biol Sci 2001, 268:2211-220. CrossRef
    55. Crepet WL, Nixon KC, Gandolfo MA: Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from cretaceous deposits. / Am J Bot 2004, 91:1666-682. CrossRef
    56. Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C: Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. / Proc Natl Acad Sci USA 2009, 106:14908-4913. CrossRef
    57. Murat F, Xu JH, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J: Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. / Genome Res 2010, 20:1545-557. CrossRef
    58. MISA program http://pgrc.ipk-gatersleben.de/misa
    59. Primer3 program http://frodo.wi.mit.edu
    60. Clepet C, Joobeur T, Zheng Y, Jublot D, Huang M, Truniger V, Boualem A, Hernandez-Gonzalez ME, Dolcet-Sanjuan R, / et al.: Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. / BMC Genomics 2011, 12:252. CrossRef
    61. Marth GT, Korf I, Yandell MD, Yeh RT, Gu Z, Zakeri H, Stitziel NO, Hillier L, Kwok PY, Gish WR: A general approach to single-nucleotide polymorphism discovery. / Nat Genet 1999, 23:452-56. CrossRef
    62. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. / Mol Biol Evol 2011, 28:2731-739. CrossRef
  • 作者单位:Di Shen (8) (9)
    Honghe Sun (10) (9)
    Mingyun Huang (9)
    Yi Zheng (9)
    Yang Qiu (8)
    Xixiang Li (8)
    Zhangjun Fei (11) (9)

    8. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
    9. Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
    10. National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
    11. U.S. Department of Agriculture/Agriculture Research Service, Robert W. Holley Centre for Agriculture and Health, Ithaca, NY, 14853, USA
  • ISSN:1471-2164
文摘
Background Radish (Raphanus sativus L., 2n--×--8) is an economically important vegetable crop worldwide. A large collection of radish expressed sequence tags (ESTs) has been generated but remains largely uncharacterized. Results In this study, approximately 315,000 ESTs derived from 22 Raphanus cDNA libraries from 18 different genotypes were analyzed, for the purpose of gene and marker discovery and to evaluate large-scale genome duplication and phylogenetic relationships among Raphanus spp. The ESTs were assembled into 85,083 unigenes, of which 90%, 65%, 89% and 89% had homologous sequences in the GenBank nr, SwissProt, TrEMBL and Arabidopsis protein databases, respectively. A total of 66,194 (78%) could be assigned at least one gene ontology (GO) term. Comparative analysis identified 5,595 gene families unique to radish that were significantly enriched with genes related to small molecule metabolism, as well as 12,899 specific to the Brassicaceae that were enriched with genes related to seed oil body biogenesis and responses to phytohormones. The analysis further indicated that the divergence of radish and Brassica rapa occurred approximately 8.9-14.9 million years ago (MYA), following a whole-genome duplication event (12.8-21.4 MYA) in their common ancestor. An additional whole-genome duplication event in radish occurred at 5.1-8.4 MYA, after its divergence from B. rapa. A total of 13,570 simple sequence repeats (SSRs) and 28,758 high-quality single nucleotide polymorphisms (SNPs) were also identified. Using a subset of SNPs, the phylogenetic relationships of eight different accessions of Raphanus was inferred. Conclusion Comprehensive analysis of radish ESTs provided new insights into radish genome evolution and the phylogenetic relationships of different radish accessions. Moreover, the radish EST sequences and the associated SSR and SNP markers described in this study represent a valuable resource for radish functional genomics studies and breeding.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700