Review of cellular mechanotransduction on micropost substrates
详细信息    查看全文
  • 作者:Yuxu Geng ; Zhanjiang Wang
  • 关键词:Cellular mechanotransduction ; Micropost substrates ; Biophysical cues ; Traction force mapping ; Bio ; chemo ; mechanical model
  • 刊名:Medical and Biological Engineering and Computing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:54
  • 期:2-3
  • 页码:249-271
  • 全文大小:2,437 KB
  • 参考文献:1.Addae-Mensah KA, Wikswo JP (2008) Measurement techniques for cellular biomechanics in vitro. Exp Biol Med (Maywood) 233(7):792–809. doi:10.​3181/​0710-MR-278 CrossRef
    2.Ananthakrishnan R, Ehrlicher A (2007) The forces behind cell movement. Int J Biol Sci 3(5):303–317PubMed PubMedCentral CrossRef
    3.Anderson DE, Hinds MT (2011) Endothelial cell micropatterning: methods, effects, and applications. Ann Biomed Eng 39(9):2329–2345. doi:10.​1007/​s10439-011-0352-z PubMed PubMedCentral CrossRef
    4.Bagorda A, Mihaylov VA, Parent CA (2006) Chemotaxis: moving forward and holding on to the past. Thromb Haemost 95(1):12–21. doi:10.​1160/​th05c07c0483 PubMed
    5.Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L, Geiger B (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3(5):466–472. doi:10.​1038/​35074532 PubMed CrossRef
    6.Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153(4):881–888PubMed PubMedCentral CrossRef
    7.Beningo KA, Lo CM, Wang YL (2002) Flexible polyacrylamide substrata for the analysis of mechanical interactions at cell–substratum adhesions. Methods Cell Matrix Adhes 69:325–339. doi:10.​1016/​S0091-679x(02)69021-1
    8.Berrier AL, Yamada KM (2007) Cell–matrix adhesion. J Cell Physiol 213(3):565–573. doi:10.​1002/​jcp.​21237 PubMed CrossRef
    9.Bershadsky A, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18(5):472–481. doi:10.​1016/​j.​ceb.​2006.​08.​012 PubMed CrossRef
    10.Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19:677–695. doi:10.​1146/​annurev.​cellbio.​19.​111301.​153011 PubMed CrossRef
    11.Birchenall CE (1983) Introduction to metallurgical thermodynamics. J Am Chem Soc 105(13):4502CrossRef
    12.Bloom RJ, George JP, Celedon A, Sun SX, Wirtz D (2008) Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys J 95(8):4077–4088. doi:10.​1529/​biophysj.​108.​132738 PubMed PubMedCentral CrossRef
    13.Blumenfeld R (2006) Isostaticity and controlled force transmission in the cytoskeleton: a model awaiting experimental evidence. Biophys J 91(5):1970–1983. doi:10.​1529/​biophysj.​105.​076703 PubMed PubMedCentral CrossRef
    14.Borghi N, Lowndes M, Maruthamuthu V, Gardel ML, Nelson WJ (2010) Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc Natl Acad Sci USA 107(30):13324–13329. doi:10.​1073/​pnas.​1002662107 PubMed PubMedCentral CrossRef
    15.Breckenridge MT, Desai RA, Yang MT, Fu JP, Chen CS (2014) Substrates with engineered step changes in rigidity induce traction force polarity and durotaxis. Cell Mol Bioeng 7(1):26–34. doi:10.​1007/​s12195-013-0307-6 CrossRef
    16.Bruinsma R (2005) Theory of force regulation by nascent adhesion sites. Biophys J 89(1):87–94. doi:10.​1529/​biophysj.​104.​048280 PubMed PubMedCentral CrossRef
    17.Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J 13:S101–S112PubMed
    18.Burton K, Taylor DL (1997) Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385(6615):450–454. doi:10.​1038/​385450a0 PubMed CrossRef
    19.Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282(3):C595–C605PubMed CrossRef
    20.Califano JP, Reinhart-King CA (2010) Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell Mol Bioeng 3(1):68–75. doi:10.​1007/​s12195-010-0102-6 PubMed PubMedCentral CrossRef
    21.Campbell JJ, Blain EJ, Chowdhury TT, Knight MM (2007) Loading alters actin dynamics and up-regulates cofilin gene expression in chondrocytes. Biochem Biophys Res Commun 361(2):329–334. doi:10.​1016/​j.​bbrc.​2007.​06.​185 PubMed CrossRef
    22.Charras GT, Horton MA (2002) Determination of cellular strains by combined atomic force microscopy and finite element modeling. Biophys J 83(2):858–879. doi:10.​1016/​S0006-3495(02)75214-4 PubMed PubMedCentral CrossRef
    23.Chen CS (2008) Mechanotransduction—a field pulling together? J Cell Sci 121(Pt 20):3285–3292. doi:10.​1242/​jcs.​023507 PubMed CrossRef
    24.Chen CS, Tan J, Tien J (2004) Mechanotransduction at cell–matrix and cell–cell contacts. Annu Rev Biomed Eng 6:275–302. doi:10.​1146/​annurev.​bioeng.​6.​040803.​140040 PubMed CrossRef
    25.Chen KD, Li YS, Kim M, Li S, Yuan S, Chien S, Shyy JY (1999) Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 274(26):18393–18400PubMed CrossRef
    26.Cheng Q, Almasri M, Sun Z, Meininger GA (2010) Micropost array for force mapping of vascular smooth muscle cells. IEEE Sens. doi:10.​1109/​Icsens.​2010.​5690288
    27.Cheng Q, Sun Z, Meininger G, Almasri M (2013) PDMS elastic micropost arrays for studying vascular smooth muscle cells. Sens Actuators B Chem 188:1055–1063. doi:10.​1016/​j.​snb.​2013.​08.​018 PubMed PubMedCentral CrossRef
    28.Chrzanowska-Wodnicka M, Burridge K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133(6):1403–1415PubMed CrossRef
    29.Curtis A, Riehle M (2001) Tissue engineering: the biophysical background. Phys Med Biol 46(4):R47–R65PubMed CrossRef
    30.Curtze S, Dembo M, Miron M, Jones DB (2004) Dynamic changes in traction forces with DC electric field in osteoblast-like cells. J Cell Sci 117(Pt 13):2721–2729. doi:10.​1242/​jcs.​01119 PubMed CrossRef
    31.Dado D, Levenberg S (2009) Cell–scaffold mechanical interplay within engineered tissue. Semin Cell Dev Biol 20(6):656–664. doi:10.​1016/​j.​semcdb.​2009.​02.​001 PubMed CrossRef
    32.Dao M, Lim CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51(11–12):2259–2280. doi:10.​1016/​j.​jmps.​2003.​09.​019 CrossRef
    33.Das T, Maiti TK, Chakraborty S (2008) Traction force microscopy on-chip: shear deformation of fibroblast cells. Lab Chip 8(8):1308–1318. doi:10.​1039/​b803925a PubMed CrossRef
    34.Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75(3):519–560PubMed PubMedCentral
    35.Delanoe-Ayari H, Iwaya S, Maeda YT, Inose J, Riviere C, Sano M, Rieu JP (2008) Changes in the magnitude and distribution of forces at different Dictyostelium developmental stages. Cell Motil Cytoskelet 65(4):314–331. doi:10.​1002/​Cm.​20262 CrossRef
    36.Dembo M, Oliver T, Ishihara A, Jacobson K (1996) Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys J 70(4):2008–2022. doi:10.​1016/​S0006-3495(96)79767-9 PubMed PubMedCentral CrossRef
    37.Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76(4):2307–2316PubMed PubMedCentral CrossRef
    38.Deshpande VS, McMeeking RM, Evans AG (2006) A bio-chemo-mechanical model for cell contractility. Proc Natl Acad Sci USA 103(38):14015–14020. doi:10.​1073/​pnas.​0605837103 PubMed PubMedCentral CrossRef
    39.Deshpande VS, McMeeking RM, Evans AG (2007) A model for the contractility of the cytoskeleton including the effects of stress-fibre formation and dissociation. Proc R Soc A Math Phys Eng Sci 463(2079):787–815. doi:10.​1098/​rspa.​2006.​1793 CrossRef
    40.Deshpande VS, Mrksich M, McMeeking RM, Evans AG (2008) A bio-mechanical model for coupling cell contractility with focal adhesion formation. J Mech Phys Solids 56(4):1484–1510. doi:10.​1016/​j.​jmps.​2007.​08.​006 CrossRef
    41.Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143. doi:10.​1126/​science.​1116995 PubMed CrossRef
    42.Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324(5935):1673–1677. doi:10.​1126/​science.​1171643 PubMed PubMedCentral CrossRef
    43.Dowling EP, Ronan W, McGarry JP (2013) Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading. Acta Biomater 9(4):5943–5955. doi:10.​1016/​j.​actbio.​2012.​12.​021 PubMed CrossRef
    44.Doyle AD, Lee J (2005) Cyclic changes in keratocyte speed and traction stress arise from Ca2+-dependent regulation of cell adhesiveness. J Cell Sci 118(Pt 2):369–379. doi:10.​1242/​jcs.​01590 PubMed CrossRef
    45.du Roure O, Dequidt C, Richert A, Austin RH, Buguin A, Chavrier P, Silberzan P, Ladoux B (2004) Microfabricated arrays of elastomeric posts to study cellular mechanics. Microfluid BioMEMS Med Microsyst II 5345:26–34. doi:10.​1117/​12.​530688 CrossRef
    46.du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Silberzan P, Ladoux B (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci USA 102(7):2390–2395. doi:10.​1073/​pnas.​0408482102 PubMed PubMedCentral CrossRef
    47.Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183. doi:10.​1038/​nature10137 PubMed CrossRef
    48.El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411. doi:10.​1038/​nature05063 PubMed CrossRef
    49.Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86(1 Pt 1):617–628. doi:10.​1016/​S0006-3495(04)74140-5 PubMed PubMedCentral CrossRef
    50.Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.​1016/​j.​cell.​2006.​06.​044 PubMed CrossRef
    51.Engler AJ, Sweeney HL, Discher DE, Schwarzbauer JE (2007) Extracellular matrix elasticity directs stem cell differentiation. J Musculoskelet Neuronal Interact 7(4):335PubMed
    52.Franck C, Maskarinec SA, Tirrell DA, Ravichandran G (2011) Three-dimensional traction force microscopy: a new tool for quantifying cell–matrix interactions. PLoS One 6(3):e17833. doi:10.​1371/​journal.​pone.​0017833 PubMed PubMedCentral CrossRef
    53.Franke RP, Grafe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D (1984) Induction of human vascular endothelial stress fibers by fluid shear-stress. Nature 307(5952):648–649. doi:10.​1038/​307648a0 PubMed CrossRef
    54.Fu J, Wang YK, Yang MT, Desai RA, Yu X, Liu Z, Chen CS (2010) Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 7(9):733–736. doi:10.​1038/​nmeth.​1487 PubMed PubMedCentral CrossRef
    55.Galbraith CG, Sheetz MP (1997) A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci USA 94(17):9114–9118PubMed PubMedCentral CrossRef
    56.Galbraith CG, Sheetz MP (1998) Forces on adhesive contacts affect cell function. Curr Opin Cell Biol 10(5):566–571PubMed CrossRef
    57.Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159(4):695–705. doi:10.​1083/​jcb.​200204153 PubMed PubMedCentral CrossRef
    58.Ganz A, Lambert M, Saez A, Silberzan P, Buguin A, Mege RM, Ladoux B (2006) Traction forces exerted through N-cadherin contacts. Biol Cell 98(12):721–730. doi:10.​1042/​Bc20060039 PubMed CrossRef
    59.Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2(11):793–805. doi:10.​1038/​35099066 PubMed CrossRef
    60.Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33. doi:10.​1038/​Nrm2593 PubMed CrossRef
    61.Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P, Buguin A, Ladoux B (2008) Traction forces and rigidity sensing regulate cell functions. Soft Matter 4(9):1836–1843. doi:10.​1039/​B804103b CrossRef
    62.Giannone G, Sheetz MP (2006) Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol 16(4):213–223. doi:10.​1016/​j.​tcb.​2006.​02.​005 PubMed CrossRef
    63.Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081. doi:10.​1126/​science.​1191035 PubMed PubMedCentral CrossRef
    64.Guck J, Lautenschlager F, Paschke S, Beil M (2010) Critical review: cellular mechanobiology and amoeboid migration. Integr Biol 2(11–12):575–583. doi:10.​1039/​c0ib00050g CrossRef
    65.Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10(1):53–62. doi:10.​1038/​nrm2596 PubMed PubMedCentral CrossRef
    66.Han SJ, Bielawski KS, Ting LH, Rodriguez ML, Sniadecki NJ (2012) Decoupling substrate stiffness, spread area, and micropost density: a close spatial relationship between traction forces and focal adhesions. Biophys J 103(4):640–648. doi:10.​1016/​j.​bpj.​2012.​07.​023 PubMed PubMedCentral CrossRef
    67.Han SJ, Sniadecki NJ (2010) Nanotechnology usages for cellular adhesion and traction forces. Cell Biomolcular Mech Mechanobiol 4:177–200. doi:10.​1007/​8415_​2010_​26 CrossRef
    68.Han SJ, Sniadecki NJ (2011) Simulations of the contractile cycle in cell migration using a bio-chemical–mechanical model. Comput Methods Biomech Biomed Eng 14(5):459–468. doi:10.​1080/​10255842.​2011.​554412 CrossRef
    69.Harris AK, Stopak D, Wild P (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290(5803):249–251. doi:10.​1038/​290249a0 PubMed CrossRef
    70.Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440):177–179PubMed CrossRef
    71.Higa A (2012) Cellular mechanotransduction via microfabricated post arrays. Ph.D. thesis, University of California, Berkeley, CA
    72.Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356):316–323. doi:10.​1038/​nature10316 PubMed CrossRef
    73.Huang H, Kamm RD, Lee RT (2004) Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol 287(1):C1–C11. doi:10.​1152/​ajpcell.​00559.​2003 PubMed CrossRef
    74.Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599. doi:10.​1146/​annurev.​physiol.​59.​1.​575 PubMed CrossRef
    75.Isenberg BC, Dimilla PA, Walker M, Kim S, Wong JY (2009) Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys J 97(5):1313–1322. doi:10.​1016/​j.​bpj.​2009.​06.​021 PubMed PubMedCentral CrossRef
    76.Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10(1):63–73. doi:10.​1038/​nrm2597 PubMed PubMedCentral CrossRef
    77.Kaunas R, Nguyen P, Usami S, Chien S (2005) Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci USA 102(44):15895–15900. doi:10.​1073/​pnas.​0506041102 PubMed PubMedCentral CrossRef
    78.Kaverina I, Krylyshkina O, Beningo K, Anderson K, Wang YL, Small JV (2002) Tensile stress stimulates microtubule outgrowth in living cells. J Cell Sci 115(Pt 11):2283–2291PubMed
    79.Knight MM, Toyoda T, Lee DA, Bader DL (2006) Mechanical compression and hydrostatic pressure induce reversible changes in actin cytoskeletal organisation in chondrocytes in agarose. J Biomech 39(8):1547–1551. doi:10.​1016/​j.​jbiomech.​2005.​04.​006 PubMed CrossRef
    80.Kolega J (1986) Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J Cell Biol 102(4):1400–1411PubMed CrossRef
    81.Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A, Silberzan P, Mege RM (2010) Strength dependence of cadherin-mediated adhesions. Biophys J 98(4):534–542. doi:10.​1016/​j.​bpj.​2009.​10.​044 PubMed PubMedCentral CrossRef
    82.Lam RHW, Sun YB, Chen WQ, Fu JP (2012) Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis. Lab Chip 12(10):1865–1873. doi:10.​1039/​C2lc21146g PubMed PubMedCentral CrossRef
    83.Lam RHW, Weng SN, Lu W, Fu JP (2012) Live-cell subcellular measurement of cell stiffness using a microengineered stretchable micropost array membrane. Integr Biol 4(10):1289–1298. doi:10.​1039/​C2ib20134h CrossRef
    84.Lee J, Leonard M, Oliver T, Ishihara A, Jacobson K (1994) Traction forces generated by locomoting keratocytes. J Cell Biol 127(6 Pt 2):1957–1964PubMed CrossRef
    85.Lemmon CA, Sniadecki NJ, Ruiz SA, Tan JT, Romer LH, Chen CS (2005) Shear force at the cell–matrix interface: enhanced analysis for microfabricated post array detectors. Mech Chem Biosyst 2(1):1–16PubMed PubMedCentral
    86.Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906. doi:10.​1016/​j.​cell.​2009.​10.​027 PubMed PubMedCentral CrossRef
    87.Li B, Xie L, Starr ZC, Yang Z, Lin JS, Wang JH (2007) Development of micropost force sensor array with culture experiments for determination of cell traction forces. Cell Motil Cytoskele 64(7):509–518. doi:10.​1002/​cm.​20200 CrossRef
    88.Lin YC, Kramer CM, Chen CS, Reich DH (2012) Probing cellular traction forces with magnetic nanowires and microfabricated force sensor arrays. Nanotechnology 23(7):075101. doi:10.​1088/​0957-4484/​23/​7/​075101 PubMed PubMedCentral CrossRef
    89.Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, Tschumperlin DJ (2010) Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol 190(4):693–706. doi:10.​1083/​jcb.​201004082 PubMed PubMedCentral CrossRef
    90.Liu M, Post M (2000) Invited review: mechanochemical signal transduction in the fetal lung. J Appl Physiol 89(5):2078–2084PubMed
    91.Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell–cell junctions. Proc Natl Acad Sci USA 107(22):9944–9949. doi:10.​1073/​pnas.​0914547107 PubMed PubMedCentral CrossRef
    92.Lo CM, Buxton DB, Chua GCH, Dembo M, Adelstein RS, Wang YL (2004) Nonmuscle myosin IIB is involved in the guidance of fibroblast migration. Mol Biol Cell 15(3):982–989. doi:10.​1091/​mbc.​E03-06-0359 PubMed PubMedCentral CrossRef
    93.Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152PubMed PubMedCentral CrossRef
    94.Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55. doi:10.​1038/​Nbt1055 PubMed CrossRef
    95.Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137(9):1407–1420. doi:10.​1242/​dev.​024166 PubMed PubMedCentral CrossRef
    96.Mann JM, Lam RH, Weng S, Sun Y, Fu J (2012) A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab Chip 12(4):731–740. doi:10.​1039/​c2lc20896b PubMed PubMedCentral CrossRef
    97.Maruthamuthu V, Sabass B, Schwarz US, Gardel ML (2011) Cell-ECM traction force modulates endogenous tension at cell–cell contacts. Proc Natl Acad Sci USA 108(12):4708–4713. doi:10.​1073/​pnas.​1011123108 PubMed PubMedCentral CrossRef
    98.Matthews BD, Overby DR, Mannix R, Ingber DE (2006) Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 119(Pt 3):508–518. doi:10.​1242/​jcs.​02760 PubMed CrossRef
    99.McGarry JP, Fu J, Yang MT, Chen CS, McMeeking RM, Evans AG, Deshpande VS (2009) Simulation of the contractile response of cells on an array of micro-posts. Philos Trans A Math Phys Eng Sci 367(1902):3477–3497. doi:10.​1098/​rsta.​2009.​0097 PubMed PubMedCentral CrossRef
    100.Mitrossilis D, Fouchard J, Guiroy A, Desprat N, Rodriguez N, Fabry B, Asnacios A (2009) Single-cell response to stiffness exhibits muscle-like behavior. Proc Natl Acad Sci USA 106(43):18243–18248. doi:10.​1073/​pnas.​0903994106 PubMed PubMedCentral CrossRef
    101.Mohammadi H, McCulloch CA (2014) Impact of elastic and inelastic substrate behaviors on mechanosensation. Soft Matter 10(3):408–420. doi:10.​1039/​c3sm52729h PubMed CrossRef
    102.Mohrdieck C, Wanner A, Roos W, Roth A, Sackmann E, Spatz JP, Arzt E (2005) A theoretical description of elastic pillar substrates in biophysical experiments. ChemPhysChem 6(8):1492–1498. doi:10.​1002/​cphc.​200500109 PubMed CrossRef
    103.Munevar S, Wang Y, Dembo M (2001) Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys J 80(4):1744–1757PubMed PubMedCentral CrossRef
    104.Nagayama K, Adachi A, Matsumoto T (2011) Heterogeneous response of traction force at focal adhesions of vascular smooth muscle cells subjected to macroscopic stretch on a micropillar substrate. J Biomech 44(15):2699–2705. doi:10.​1016/​j.​jbiomech.​2011.​07.​023 PubMed CrossRef
    105.Neilson MP, Veltman DM, van Haastert PJ, Webb SD, Mackenzie JA, Insall RH (2011) Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour. PLoS Biol 9(5):e1000618. doi:10.​1371/​journal.​pbio.​1000618 PubMed PubMedCentral CrossRef
    106.Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA 102(33):11594–11599. doi:10.​1073/​pnas.​0502575102 PubMed PubMedCentral CrossRef
    107.Nicolas A, Geiger B, Safran SA (2004) Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc Natl Acad Sci USA 101(34):12520–12525. doi:10.​1073/​pnas.​0403539101 PubMed PubMedCentral CrossRef
    108.Nicolas A, Safran SA (2006) Limitation of cell adhesion by the elasticity of the extracellular matrix. Biophys J 91(1):61–73. doi:10.​1529/​biophysj.​105.​077115 PubMed PubMedCentral CrossRef
    109.Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81(1):53–62PubMed CrossRef
    110.Novak IL, Slepchenko BM, Mogilner A, Loew LM (2004) Cooperativity between cell contractility and adhesion. Phys Rev Lett. doi:10.​1103/​Physrevlett.​93.​268109
    111.Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10(1):11–20. doi:10.​1016/​j.​devcel.​2005.​12.​006 PubMed CrossRef
    112.Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E, Geisse NA, Adams JC, Whitesides GM, Ingber DE (2002) Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J 16(10):1195–1204. doi:10.​1096/​fj.​02-0038com PubMed CrossRef
    113.Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254. doi:10.​1016/​j.​ccr.​2005.​08.​010 PubMed CrossRef
    114.Pathak A, Deshpande VS, McMeeking RM, Evans AG (2008) The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J R Soc Interface 5(22):507–524. doi:10.​1098/​rsif.​2007.​1182 PubMed PubMedCentral CrossRef
    115.Pathak A, McMeeking RM, Evans AG, Deshpande VS (2011) An analysis of the cooperative mechano-sensitive feedback between intracellular signaling, focal adhesion development, and stress fiber contractility. J Appl Mech Trans ASME. doi:10.​1115/​1.​4003705
    116.Pelham RJ Jr, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94(25):13661–13665PubMed PubMedCentral CrossRef
    117.Petroll WM, Ma L, Jester JV (2003) Direct correlation of collagen matrix deformation with focal adhesion dynamics in living corneal fibroblasts. J Cell Sci 116(Pt 8):1481–1491PubMed CrossRef
    118.Petronis S, Gold J, Kasemo B (2003) Microfabricated force-sensitive elastic substrates for investigation of mechanical cell–substrate interactions. J Micromech Microeng 13(6):900–913. doi:10.​1088/​0960-1317/​13/​6/​313 CrossRef
    119.Raab M, Swift J, Dingal PC, Shah P, Shin JW, Discher DE (2012) Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J Cell Biol 199(4):669–683. doi:10.​1083/​jcb.​201205056 PubMed PubMedCentral CrossRef
    120.Rabodzey A, Alcaide P, Luscinskas FW, Ladoux B (2008) Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys J 95(3):1428–1438. doi:10.​1529/​biophysj.​107.​119156 PubMed PubMedCentral CrossRef
    121.Rape AD, Guo WH, Wang YL (2011) The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials 32(8):2043–2051. doi:10.​1016/​j.​biomaterials.​2010.​11.​044 PubMed PubMedCentral CrossRef
    122.Reinhart-King CA, Dembo M, Hammer DA (2005) The dynamics and mechanics of endothelial cell spreading. Biophys J 89(1):676–689. doi:10.​1529/​biophysj.​104.​054320 PubMed PubMedCentral CrossRef
    123.Ricart BG, Yang MT, Hunter CA, Chen CS, Hammer DA (2011) Measuring traction forces of motile dendritic cells on micropost arrays. Biophys J 101(11):2620–2628. doi:10.​1016/​j.​bpj.​2011.​09.​022 PubMed PubMedCentral CrossRef
    124.Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153(6):1175–1185. doi:10.​1083/​jcb.​153.​6.​1175 PubMed PubMedCentral CrossRef
    125.Roberts SR, Knight MM, Lee DA, Bader DL (2001) Mechanical compression influences intracellular Ca2+ signaling in chondrocytes seeded in agarose constructs. J Appl Physiol 90(4):1385–1391PubMed
    126.Rodriguez AG, Han SJ, Regnier M, Sniadecki NJ (2011) Substrate stiffness increases twitch power of neonatal cardiomyocytes in correlation with changes in myofibril structure and intracellular calcium. Biophys J 101(10):2455–2464. doi:10.​1016/​j.​bpj.​2011.​09.​057 PubMed PubMedCentral CrossRef
    127.Ronan W, Pathak A, Deshpande VS, McMeeking RM, McGarry JP (2013) Simulation of the mechanical response of cells on micropost substrates. J Biomech Eng 135(10):101012. doi:10.​1115/​1.​4025114 PubMed CrossRef
    128.Sabass B, Gardel ML, Waterman CM, Schwarz US (2008) High resolution traction force microscopy based on experimental and computational advances. Biophys J 94(1):207–220. doi:10.​1529/​biophysj.​107.​113670 PubMed PubMedCentral CrossRef
    129.Saez A, Anon E, Ghibaudo M, du Roure O, Di Meglio JM, Hersen P, Silberzan P, Buguin A, Ladoux B (2010) Traction forces exerted by epithelial cell sheets. J Phys Condens Matter 22(19):194119. doi:10.​1088/​0953-8984/​22/​19/​194119 PubMed CrossRef
    130.Saez A, Buguin A, Silberzan P, Ladoux B (2005) Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J 89(6):L52–L54. doi:10.​1529/​biophysj.​105.​071217 PubMed PubMedCentral CrossRef
    131.Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B (2007) Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci USA 104(20):8281–8286. doi:10.​1073/​pnas.​0702259104 PubMed PubMedCentral CrossRef
    132.Saez A, Ladoux B, du Roure O, Silberzan P, Buguin A, Chavrier P, Austin RH (2005) An array of micro fabricated pillars to map forces during epithelial cell migration. Biophys J 88(1):518a
    133.Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95(9):4426–4438. doi:10.​1529/​biophysj.​108.​132217 PubMed PubMedCentral CrossRef
    134.Satcher RL Jr, Dewey CF Jr (1996) Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys J 71(1):109–118. doi:10.​1016/​S0006-3495(96)79206-8 PubMed PubMedCentral CrossRef
    135.Sawada Y, Sheetz MP (2002) Force transduction by Triton cytoskeletons. J Cell Biol 156(4):609–615. doi:10.​1083/​jcb.​200110068 PubMed PubMedCentral CrossRef
    136.Schmitz GJ, Brucker C, Jacobs P (2005) Manufacture of high-aspect-ratio micro-hair sensor arrays. J Micromech Microeng 15(10):1904–1910. doi:10.​1088/​0960-1317/​15/​10/​016 CrossRef
    137.Schoen I, Hu W, Klotzsch E, Vogel V (2010) Probing cellular traction forces by micropillar arrays: contribution of substrate warping to pillar deflection. Nano Lett 10(5):1823–1830. doi:10.​1021/​nl100533c PubMed PubMedCentral CrossRef
    138.Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2(12):a005066. doi:10.​1101/​cshperspect.​a005066 PubMed PubMedCentral CrossRef
    139.Schwarz US, Balaban NQ, Riveline D, Bershadsky A, Geiger B, Safran SA (2002) Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys J 83(3):1380–1394PubMed PubMedCentral CrossRef
    140.Sen S, Kumar S (2010) Combining mechanical and optical approaches to dissect cellular mechanobiology. J Biomech 43(1):45–54. doi:10.​1016/​j.​jbiomech.​2009.​09.​008 PubMed PubMedCentral CrossRef
    141.Shemesh T, Geiger B, Bershadsky AD, Kozlov MM (2005) Focal adhesions as mechanosensors: a physical mechanism. Proc Natl Acad Sci USA 102(35):12383–12388. doi:10.​1073/​pnas.​0500254102 PubMed PubMedCentral CrossRef
    142.Shraiman BI (2005) Mechanical feedback as a possible regulator of tissue growth. Proc Natl Acad Sci USA 102(9):3318–3323. doi:10.​1073/​pnas.​0404782102 PubMed PubMedCentral CrossRef
    143.Sniadecki NJ, Anguelouch A, Yang MT, Lamb CM, Liu Z, Kirschner SB, Liu Y, Reich DH, Chen CS (2007) Magnetic microposts as an approach to apply forces to living cells. Proc Natl Acad Sci USA 104(37):14553–14558. doi:10.​1073/​pnas.​0611613104 PubMed PubMedCentral CrossRef
    144.Sniadecki NJ, Chen CS (2007) Microfabricated silicone elastomeric post arrays for measuring traction forces of adherent cells. Methods Cell Biol 83:313–328. doi:10.​1016/​S0091-679X(07)83013-5 PubMed CrossRef
    145.Sniadecki NJ, Desai RA, Ruiz SA, Chen CS (2006) Nanotechnology for cell–substrate interactions. Ann Biomed Eng 34(1):59–74. doi:10.​1007/​s10439-005-9006-3 PubMed CrossRef
    146.Sniadecki NJ, Lamb CM, Liu Y, Chen CS, Reich DH (2008) Magnetic microposts for mechanical stimulation of biological cells: fabrication, characterization, and analysis. Rev Sci Instrum 79(4):044302. doi:10.​1063/​1.​2906228 PubMed PubMedCentral CrossRef
    147.Sochol RD, Higa AT, Janairo RRR, Li S, Lin L (2011) Effects of micropost spacing and stiffness on cell motility. Micro Nano Lett 6(5):323–326. doi:10.​1049/​mnl.​2011.​0020 CrossRef
    148.Sochol RD, Higa AT, Janairo RRR, Li S, Lin LW (2011) Unidirectional mechanical cellular stimuli via micropost array gradients. Soft Matter 7(10):4606–4609. doi:10.​1039/​C1sm05163f CrossRef
    149.Spatz JP, Geiger B (2007) Molecular engineering of cellular environments: cell adhesion to nano-digital surfaces. Methods Cell Biol 83:89–111. doi:10.​1016/​S0091-679X(07)83005-6 PubMed CrossRef
    150.Stephens L, Milne L, Hawkins P (2008) Moving towards a better understanding of chemotaxis. Curr Biol 18(11):R485–R494. doi:10.​1016/​j.​cub.​2008.​04.​048 PubMed CrossRef
    151.Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435(7039):191–194. doi:10.​1038/​nature03521 PubMed CrossRef
    152.Sun Y, Chen CS, Fu J (2012) Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys 41:519–542. doi:10.​1146/​annurev-biophys-042910-155306 PubMed PubMedCentral CrossRef
    153.Sun Y, Villa-Diaz LG, Lam RH, Chen W, Krebsbach PH, Fu J (2012) Mechanics regulates fate decisions of human embryonic stem cells. PLoS One 7(5):e37178. doi:10.​1371/​journal.​pone.​0037178 PubMed PubMedCentral CrossRef
    154.Sun Y, Weng S, Fu J (2012) Microengineered synthetic cellular microenvironment for stem cells. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(4):414–427. doi:10.​1002/​wnan.​1175 PubMed PubMedCentral CrossRef
    155.Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341(6149):1240104. doi:10.​1126/​science.​1240104 PubMed PubMedCentral CrossRef
    156.Takahashi M, Ishida T, Traub O, Corson MA, Berk BC (1997) Mechanotransduction in endothelial cells: temporal signaling events in response to shear stress. J Vasc Res 34(3):212–219PubMed CrossRef
    157.Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100(4):1484–1489. doi:10.​1073/​pnas.​0235407100 PubMed PubMedCentral CrossRef
    158.Thery M, Racine V, Piel M, Pepin A, Dimitrov A, Chen Y, Sibarita JB, Bornens M (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci USA 103(52):19771–19776. doi:10.​1073/​pnas.​0609267103 PubMed PubMedCentral CrossRef
    159.Ting LH, Jahn JR, Jung JI, Shuman BR, Feghhi S, Han SJ, Rodriguez ML, Sniadecki NJ (2012) Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions. Am J Physiol Heart Circ Physiol 302(11):H2220–H2229. doi:10.​1152/​ajpheart.​00975.​2011 PubMed PubMedCentral CrossRef
    160.Tolic-Norrelykke IM, Wang N (2005) Traction in smooth muscle cells varies with cell spreading. J Biomech 38(7):1405–1412. doi:10.​1016/​j.​jbiomech.​2004.​06.​027 PubMed CrossRef
    161.Trichet L, Le Digabel J, Hawkins RJ, Vedula SR, Gupta M, Ribrault C, Hersen P, Voituriez R, Ladoux B (2012) Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc Natl Acad Sci USA 109(18):6933–6938. doi:10.​1073/​pnas.​1117810109 PubMed PubMedCentral CrossRef
    162.Vaziri A, Gopinath A (2008) Cell and biomolecular mechanics in silico. Nat Mater 7(1):15–23. doi:10.​1038/​nmat2040 PubMed CrossRef
    163.Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7(4):265–275. doi:10.​1038/​nrm1890 PubMed CrossRef
    164.Wang JH, Goldschmidt-Clermont P, Wille J, Yin FC (2001) Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J Biomech 34(12):1563–1572PubMed CrossRef
    165.Wang JH, Goldschmidt-Clermont P, Yin FC (2000) Contractility affects stress fiber remodeling and reorientation of endothelial cells subjected to cyclic mechanical stretching. Ann Biomed Eng 28(10):1165–1171PubMed CrossRef
    166.Wang JH, Lin JS (2007) Cell traction force and measurement methods. Biomech Model Mechanobiol 6(6):361–371. doi:10.​1007/​s10237-006-0068-4 PubMed CrossRef
    167.Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell-surface and through the cytoskeleton. Science 260(5111):1124–1127. doi:10.​1126/​science.​7684161 PubMed CrossRef
    168.Wang N, Ostuni E, Whitesides GM, Ingber DE (2002) Micropatterning tractional forces in living cells. Cell Motil Cytoskelet 52(2):97–106. doi:10.​1002/​cm.​10037 CrossRef
    169.Wang N, Tolic-Norrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenovic D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282(3):C606–C616. doi:10.​1152/​ajpcell.​00269.​2001 PubMed CrossRef
    170.Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10(1):75–82. doi:10.​1038/​Nrm2594 PubMed CrossRef
    171.Wang YL, Pelham RJ Jr (1998) Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol 298:489–496PubMed CrossRef
    172.Wang Z, Geng Y (2015) Unidirectional cell crawling model guided by extracellular cues. J Biomech Eng 137(3):031006. doi:10.​1115/​1.​4029301 CrossRef
    173.Warshaw DM, Desrosiers JM, Work SS, Trybus KM (1990) Smooth muscle myosin cross
    idge interactions modulate actin filament sliding velocity in vitro. J Cell Biol 111(2):453–463PubMed CrossRef
    174.Wei Z, Deshpande VS, McMeeking RM, Evans AG (2008) Analysis and interpretation of stress fiber organization in cells subject to cyclic stretch. J Biomech Eng 130(3):031009. doi:10.​1115/​1.​2907745 PubMed CrossRef
    175.Weng S, Fu J (2011) Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Biomaterials 32(36):9584–9593. doi:10.​1016/​j.​biomaterials.​2011.​09.​006 PubMed PubMedCentral CrossRef
    176.Wirtz HR, Dobbs LG (2000) The effects of mechanical forces on lung functions. Respir Physiol 119(1):1–17PubMed CrossRef
    177.Wozniak MA, Chen CS (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 10(1):34–43. doi:10.​1038/​nrm2592 PubMed PubMedCentral CrossRef
    178.Xiao T, Takagi J, Coller BS, Wang JH, Springer TA (2004) Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432(7013):59–67. doi:10.​1038/​nature02976 PubMed PubMedCentral CrossRef
    179.Yang MT, Fu J, Wang YK, Desai RA, Chen CS (2011) Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nat Protoc 6(2):187–213. doi:10.​1038/​nprot.​2010.​189 PubMed CrossRef
    180.Yang MT, Sniadecki NJ, Chen CS (2007) Geometric considerations of micro- to nano-scale lastomeric post arrays to study cellular traction forces. Adv Mater 19(20):3119. doi:10.​1002/​adma.​200701956 CrossRef
    181.Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskelet 60(1):24–34. doi:10.​1002/​cm.​20041 CrossRef
    182.Zamir E, Katz M, Posen Y, Erez N, Yamada KM, Katz BZ, Lin S, Lin DC, Bershadsky A, Kam Z, Geiger B (2000) Dynamics and segregation of cell–matrix adhesions in cultured fibroblasts. Nat Cell Biol 2(4):191–196. doi:10.​1038/​35008607 PubMed CrossRef
    183.Zhao Y, Zhang X (2005) Adaptation of flexible polymer fabrication to cellular mechanics study. Appl Phys Lett. doi:10.​1063/​1.​2061861 PubMed PubMedCentral
  • 作者单位:Yuxu Geng (1)
    Zhanjiang Wang (1)

    1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China
  • 刊物类别:Engineering
  • 刊物主题:Biomedical Engineering
    Human Physiology
    Imaging and Radiology
    Computer Applications
    Neurosciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1741-0444
文摘
As physical entities, living cells can sense and respond to various stimulations within and outside the body through cellular mechanotransduction. Any deviation in cellular mechanotransduction will not only undermine the orchestrated regulation of mechanical responses, but also lead to the breakdown of their physiological function. Therefore, a quantitative study of cellular mechanotransduction needs to be conducted both in experiments and in computational simulations to investigate the underlying mechanisms of cellular mechanotransduction. In this review, we present an overview of the current knowledge and significant progress in cellular mechanotransduction via micropost substrates. In the aspect of experimental studies, we summarize significant experimental progress and place an emphasis on the coupled relationship among cellular spreading, focal adhesion and contractility as well as the influence of substrate properties on force-involved cellular behaviors. In the other aspect of computational investigations, we outline a coupled framework including the biochemically motivated stress fiber model and thermodynamically motivated adhesion model and present their predicted biomechanical responses and then compare predicted simulation results with experimental observations to further explore the mechanisms of cellular mechanotransduction. At last, we discuss the future perspectives both in experimental technologies and in computational models, as well as facing challenges in the area of cellular mechanotransduction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700