Carbon nanotubes-functionalized urchin-like In2S3 nanostructure for sensitive and selective electrochemical sensing of dopamine
详细信息    查看全文
  • 作者:Zhanjun Yang (1) zjyang@yzu.edu.cn
    Xiaochun Huang (1)
    Juan Li (1)
    Yongcai Zhang (1)
    Suhua Yu (1)
    Qin Xu (1)
    Xiaoya Hu (1) xyhu@yzu.edu.cn
  • 关键词:Urchin ; like In2S3 – ; Nanostructure – ; Carbon nanotubes – ; Dopamine – ; Electrochemical detection
  • 刊名:Microchimica Acta
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:177
  • 期:3-4
  • 页码:381-387
  • 全文大小:410.6 KB
  • 参考文献:1. Heien MLAV, Khan AS, Ariansen JL, Cheer JF, Phillips PEM, Wassum KM, Wightman RM (2005) Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc Natl Acad Sci U S A 102:10023
    2. Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60:769A
    3. Chang JL, Wei GT, Zen JM (2011) Screen-printed ionic liquid/preanodized carbon electrode: effective detection of dopamine in the presence of high concentration of ascorbic acid. Electrochem Commun 13:174
    4. Snowden ME, Unwin PR, Macpherson JV (2011) Single walled carbon nanotube channel flow electrode: hydrodynamic voltammetry at the nanomolar level. Electrochem Commun 13:186
    5. Wang Y, Li YM, Tang LH, Lu J, Li JH (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889
    6. Xiao CH, Chu XC, Yang Y, Li X, Zhang XH, Chen JH (2011) Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine. Biosens Bioelectron 26:2934
    7. Ali SR, Ma YF, Parajuli RR, Balogun Y, Lai WYC, He HX (2007) A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal Chem 79:2583
    8. Ciszewski A, Milczarek G (1999) Polyeugenol-modified platinum electrode for selective detection of dopamine in the presence of ascorbic acid. Anal Chem 71:1055
    9. Jin GY, Zhang YZ, Cheng WX (2005) Poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid. Sensors Actuators B 107:528
    10. Kumar SA, Tang CF, Chen SM (2008) Poly(4-amino-1-1′-azobenzene-3, 4′-disulfonic acid) coated electrode for selective detection of dopamine from its interferences. Talanta 74:860
    11. Zhang R, Jin GD, Chen D, Hu XY (2009) Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode. Sensors Actuators B Chem 138:174
    12. Huang JS, Liu Y, Hou HQ, You TY (2008) Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens Bioelectron 24:632
    13. Ndangili PM, Arotiba OA, Baker PGL, Iwuoha EI (2010) A potential masking approach in the detection of dopamine on 3-mercaptopropionic acid capped ZnSe quantum dots modified gold electrode in the presence of interferences. J Electroanal Chem 643:77
    14. Shakkthivel P, Chen SM (2007) Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode. Biosens Bioelectron 22:1680
    15. Tang CF, Kumar SA, Chen SM (2008) Zinc oxide/redox mediator composite films-based sensor for electrochemical detection of important biomolecules. Anal Biochem 380:174
    16. Wang YL, Nepal D, Geckeler KE (2005) Hollow porous carbon nanospheres with large surface area and stability, assembled from oxidized fullerenes. J Mater Chem 15:1049
    17. Shaidarova LG, Chelnokova IA, Romanova EI, Gedmina AV, Budnikov GK (2011) Joint voltammetric determination of dopamine and uric acid. Russ J Appl Chem 84:218
    18. Shaidarova LG, Chelnokova IA, Gedmina AV, Budnikov GK (2009) Simultaneous voltammetric determination of dopamine and ascorbic acid at an electrode modified with the gold-palladium binary system. J Anal Chem 64:36
    19. EI-Said WA, Lee JH, Oh BK, Choi JW (2010) 3-D nanoporous gold thin film for the simultaneous electrochemical determination of dopamine and ascorbic acid. Electrochem Commun 12:1756
    20. Ge PY, Du Y, Xu JJ, Chen HY (2009) Detection of dopamine based on the unique property of gold nanofilm. J Electroanal Chem 633:182
    21. Jia Z, Liu J, Shen YB (2007) Fabrication of a template-synthesized gold nanorod-modified electrode for the detection of dopamine in the presence of ascorbic acid. Electrochem Commun 9:2739
    22. Sun D, Xie XF, Zhang HJ (2010) Surface effects of mesoporous silica modified electrode and application in electrochemical detection of dopamine. Colloid Surf B 75:88
    23. Sun CL, Lee HH, Yang JM, Wu CC (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioelectron 26:3450
    24. Deng SY, Jian GQ, Lei JP, Hu Z, Ju HX (2009) A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes. Biosens Bioelectron 25:373
    25. Gao WC, Dong HF, Lei JP, Ji HX, Ju HX (2011) Signal amplification of streptavidin-horseradish peroxidase functionalized carbon nanotubes for amperometric detection of attomolar DNA. Chem Commun 47:5220
    26. Wang J, Lin YH (2008) Functionalized carbon nanotubes and nanofibers for biosensing applications. TrAC Trends Anal Chem 27:619
    27. Du D, Wang MH, Qin YH, Lin YH (2010) One-step electrochemical deposition of Prussian Blue-multiwalled carbon nanotube nanocomposite thin-film: preparation, characterization and evaluation for H2O2 sensing. J Mater Chem 20:1532
    28. Adekunle AS, Agboola BO, Pillay J, Ozoemena KI (2010) Electrocatalytic detection of dopamine at single-walled carbon nanotubes-iron (III) oxide nanoparticles platform. Sensors Actuators B Chem 148:93
    29. Hocevar SB, Wang J, Deo RP, Musameh M, Ogorevc B (2005) Carbon nanotube modified microelectrode for enhanced voltammetric detection of dopamine in the presence of ascorbate. Electroanalysis 17:417
    30. Moreno M, Arribas AS, Bermejo E, Chicharro M, Zapardiel A, Rodriguez MC, Jalit Y, Rivas GA (2010) Selective detection of dopamine in the presence of ascorbic acid using carbon nanotube modified screen-printed electrodes. Talanta 80:2149
    31. Dong XY, Mi XN, Zhao WW, Xu JJ, Chen HY (2011) CdS nanoparticles functionalized colloidal carbon particles: preparation, characterization and application for electrochemical detection of thrombin. Biosens Bioelectron 26:3654
    32. Yang ZJ, Ren YY, Zhang RC, Li J, Li HB, Huang XC, Hu XY, Xu Q (2011) Nanoflake-like SnS2 matrix for glucose biosensing based on direct electrochemistry of glucose oxidase. Biosens Bioelectron 26:4337
    33. Wang QY, Yu K, Xu F, Wu J (2008) Synthesis and field-emission properties of In2O3 nanostructures. Mater Lett 62:2710
    34. Bai HX, Zhang LX, Zhang YC (2009) Simple synthesis of urchin-like In2S3 and In2O3 nanostructures. Mater Lett 63:823
    35. Baldrich E, G贸mez R, Gabriel G, Mu帽oz FX (2011) Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotubes: application to dopamine detection. Biosens Bioelectron 26:1876
    36. Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25:2366
    37. Wang AJ, Feng JJ, Li YF, Xi JL, Dong WJ (2010) In-situ decorated gold nanoparticles on polyaniline with enhanced electrocatalysis toward dopamine. Microchim Acta 171:431
    38. Joshi P, Joshi HC, Sanghi SK, Kundu S (2010) Immobilization of monoamine oxidase on eggshell membrane and its application in designing an amperometric biosensor for dopamine. Microchim Acta 169:383
    39. Wang YL, Peng W, Liu L, Tang M, Gao F, Li MG (2011) Enhanced conductivity of a glassy carbon electrode modified with a graphene-doped film of layered double hydroxides for selective sensing of dopamine. Microchim Acta 174:41
    40. Chen PY, Vittal R, Nien PC, Ho KC (2009) Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion (R). Biosens Bioelectron 24:3504
  • 作者单位:1. College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 People鈥檚 Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
Urchin-like In2S3 nanostructures were functionalized with multi-walled carbon nanotubes (MWCNTs) and deposited on a glassy carbon electrode (GCE) to obtain a new kind of sensor for dopamine (DA). The new electrode was characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, cyclic voltammetry and differential pulse voltammetry. It is found that the current response toward DA is significantly enhanced compared to that of a bare GCE or a GCE modified with MWCNTs. The peak separation between DA and ascorbic acid (AA) is up to 225 mV. The new electrode also has improved selectivity for DA over AA compared to the bare electrode. The new DA sensor has a wide linear range (0.5–300 μM), high sensitivity (594.9 μA mM−1 cm−2) and low detection limit (0.1 μM). CNTs wrapped on urchin-like nanostructures remarkable improve its electrocatalytic activity and thus provide a promising strategy to develop excellent composite materials for electrochemical sensing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700