Catalysis effect and conversion process of transition metal chlorides in the synthesis of diethyl carbonate from ethyl carbamate and ethanol
详细信息    查看全文
  • 作者:Wenbo Zhao ; Dong Feng ; Jiejing Nong…
  • 关键词:Diethyl carbonate ; Ethyl carbamate ; Ethanol ; Transition metal chloride ; Conversion ; Catalysis
  • 刊名:Reaction Kinetics, Mechanisms and Catalysis
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:117
  • 期:2
  • 页码:639-654
  • 全文大小:1,004 KB
  • 参考文献:1.Shaikh AA, Sivaram S (1996) Chem Rev 96:951–976CrossRef
    2.Tundo P, Perosa A (2002) Chem Rec 2:13–23CrossRef
    3.Zhang P, Fan M, Jiang P (2012) RSC Adv 2:4593–4595CrossRef
    4.Carloni S, De Vos DE, Jacobs PA, Maggi R, Sartori G, Sartorio R (2002) J Catal 205:199–204CrossRef
    5.Sakakura T, Kohno K (2009) Chem Commun 11:1312–1330CrossRef
    6.Schaffner B, Schaffner F, Verevkin SP, Borner A (2010) Chem Rev 110:4554–4581CrossRef
    7.Arockiam P, Poirier V, Fischmeister C, Bruneau C, Dixneuf PH (2009) Green Chem 11:1871–1875CrossRef
    8.Punnoose A, Seehra MS, Dunn BC, Eyring EM (2002) Energy Fuels 16:182–188CrossRef
    9.Ma XB, Fan MM, Zhang PB (2004) Catal Commun 5:765–770CrossRef
    10.Murugan C, Bajaj HC (2011) Fuel Process Technol 92:77–82CrossRef
    11.Hao C, Wang S, Ma X (2009) J Mol Catal A Chem 306:130–135CrossRef
    12.Arbelaez O, Orrego A, Bustamante F, Luz A (2012) Villa. Top Catal 55:668–672CrossRef
    13.Wang DP, Yang BL, Zhai XW, Zhou LG (2007) Fuel Process Technol 88:807–812CrossRef
    14.Wu X, Kang M, Yin Y, Wang F, Zhao N, Xiao F, Wei W, Sun Y (2014) Appl Catal A Gen 473:13–20CrossRef
    15.Wu X, Kang M, Zhao N, Wei W, Sun Y (2014) Catal Commun 46:46–50CrossRef
    16.Kaminskaia NV, Kostic NM (1998) Inorg Chem 37:4302–4312CrossRef
    17.Wang MH, Wang H, Zhao N, Wei W, Sun YH (2006) Catal Commun 7:6–10CrossRef
    18.Zhao W, Wang F, Peng W, Zhao N, Li J, Xiao F, Wei W, Sun Y (2008) Ind Eng Chem Res 47:5913–5917CrossRef
    19.Wang DF, Zhang XL (2012) Adv Mater Res Switz 479–481:1768–1771
    20.Qin XY, Liu B, Han B, Zhao WB, Wu SS, Lian PC (2013) Adv Mater Res Switz 821–822:1081–1084CrossRef
    21.An HL, Zhao XQ, Guo L, Jia CY, Yuan BG, Wang YJ (2012) Appl Catal A Gen 433:229–235CrossRef
    22.Guo L, Zhao XQ, An HL, Wang YJ (2012) Chin J Catal 33:595–600CrossRef
    23.Wang LG, Li HQ, Xin SM, Li FJ (2014) Catal Commun 50:49–53CrossRef
    24.Xin S, Wang L, Li H, Huang K, Li F (2014) Fuel Process Technol 126:453–459CrossRef
    25.Dibenedetto A, Angelini A, Aresta M, Fasciano S, Cucciolito ME, Ruffo F, Aresta BM, Curulla-Ferre D, De Giglio E (2015) Appl Catal A Gen 493:1–7CrossRef
    26.Wang P, Liu S, Zhou F, Yang B, Alshammari AS, Deng Y (2015) RSC Adv 5:19534–19540CrossRef
    27.Li F, Li H, Wang L, He P, Cao Y (2015) Catal Sci Technol 5:1021–1034CrossRef
    28.Zhu H, Gu X, Yao K, Gao L, Chen J (2009) Ind Eng Chem Res 48:5317–5320CrossRef
    29.Weil KS (2008) J Solid State Chem 181:199–210CrossRef
    30.Navarro JAR, Lippert B (1999) Coord Chem Rev 185–6:653–667CrossRef
    31.Smith JP, Wendlandt WW (1964) J Inorg Nucl Chem 26:1157–1163CrossRef
    32.Reardon H, Hanlon JM, Grant M, Fullbrook I, Gregory DH (2012) Crystals 2:193–212CrossRef
    33.Clark RJH, Williams CS (1966) J Chem Soc A. Theoretical, Physical, pp 1425–1430
    34.Téllez CAS, de Souza FA (1991) Spectrosc Lett 24:1209–1217CrossRef
    35.Eβmann R, Mockenhaupt C (1996) Spectrochim Acta Part A Mol Biomol Spectrosc 52:1897–1901CrossRef
    36.Corma A, Garcia H (2003) Chem Rev 103:4307–4365CrossRef
    37.Patil KC, Secco EA (1971) Can J Chem 49:3831–3835CrossRef
    38.Kenessey G, Liptay G (1994) J Therm Anal 41:519–533CrossRef
    39.Leineweber A, Jacobs H (2000) J Solid State Chem 152:381–387CrossRef
    40.Leineweber A, Jacobs H, Ehrenberg H (2000) Z Anorg Allg Chem 626:2146–2152CrossRef
    41.Dibenedetto A, Angelini A, Fasciano S, Papai I, Curulla-Ferre D, Aresta M (2014) J CO2 Util 8:27–33CrossRef
  • 作者单位:Wenbo Zhao (1)
    Dong Feng (1)
    Jiejing Nong (1)
    Guobiao Cao (1)
    Xiangting Liu (1)
    Zhuang Tang (1)
    Yuan Chen (1)

    1. Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Industrial Chemistry and Chemical Engineering
    Physical Chemistry
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1878-5204
文摘
The catalysis effect of transition metal chlorides (TMC) for the synthesis of diethyl carbonate (DEC) from ethyl carbamate and ethanol was investigated in a batch reactor. Their activities were arranged as follows: MnCl2 > CoCl2 > ZnCl2 > CdCl2 > NiCl2, the corresponding yields of DEC were 11, 6.5, 3.7, 2.8, and 2.4 % at 190 °C in 12 h. The highest decomposition temperatures of their diammine complexes were sorted as follows: Ni(NH3)2Cl2 > Mn(NH3)2Cl2 > Co(NH3)2Cl2 > Cd(NH3)2Cl2 > Zn(NH3)2Cl2. These results indicated that the activity of TMC was not entirely determined by its ammonia capture ability, which is characterized by the decomposition temperature of diammine complex. On the other hand, the diammine TMC still showed activity for the synthesis of DEC. Their activities were a little lower than those of the corresponding TMC but the sequence was the same to that of TMC. In the reaction process, TMC was found to be coordinated with byproduct ammonia yielded in situ to form ammine complex, in which the number of ammonia molecule would change with the reaction conditions. These results indicated that the catalysis ability of TMC was the crucial influence factor for DEC yield and the reaction coupling ability of it was also benefit for DEC synthesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700