Insight into Mechanisms of Cellular Uptake of Lipid Nanoparticles and Intracellular Release of Small RNAs
详细信息    查看全文
  • 作者:Bo Yu (1) (2)
    Xinmei Wang (2)
    Chenguang Zhou (2) (3)
    Lesheng Teng (3) (4)
    Wei Ren (5)
    Zhaogang Yang (3)
    Chih-Hsin Shih (6)
    Tianyou Wang (7)
    Robert J. Lee (10) (2) (3) (4)
    Suoqin Tang (8)
    L. James Lee (1) (2) (9)
  • 关键词:intracellular trafficking ; lipid nanoparticles ; miRNA ; molecular beacon ; siRNA
  • 刊名:Pharmaceutical Research
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:31
  • 期:10
  • 页码:2685-2695
  • 全文大小:2,894 KB
  • 参考文献:1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806鈥?1. CrossRef
    2. Yu B, Zhao X, Lee LJ, Lee RJ. Targeted delivery systems for oligonucleotide therapeutics. AAPS J. 2009;11:195鈥?03. CrossRef
    3. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer. 2011;11:59鈥?7. CrossRef
    4. Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8:173鈥?4. CrossRef
    5. Love KT, Mahon KP, Levins CG, / et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci U S A. 2010;107:1864鈥?. CrossRef
    6. Semple SC, Akinc A, Chen J, / et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28:172鈥?. CrossRef
    7. Yu B, Hsu SH, Zhou C, / et al. Lipid nanoparticles for hepatic delivery of small interfering RNA. Biomaterials. 2012;33:5924鈥?4. CrossRef
    8. Wang X, Yu B, Ren W, Mo X, Zhou C, He H, / et al. Enhanced hepatic delivery of siRNA and microRNA using oleic acid based lipid nanoparticle formulations. J Control Release. 2013;172:690鈥?. CrossRef
    9. Lin PJ, Tam YY, Hafez I, / et al. Influence of cationic lipid composition on uptake and intracellular processing of lipid nanoparticle formulations of siRNA. Nanomedicine. 2013;9:233鈥?6. CrossRef
    10. Wang X, Yu B, Wu Y, Lee RJ, Lee LJ. Efficient down-regulation of CDK4 by novel lipid nanoparticle-mediated siRNA delivery. Anticancer Res. 2011;31:1619鈥?6.
    11. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145:182鈥?5. CrossRef
    12. Duncan R, Richardson SC. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm. 2012;9:2380鈥?02. CrossRef
    13. Hsu CY, Uludag H. Cellular uptake pathways of lipid-modified cationic polymers in gene delivery to primary cells. Biomaterials. 2012;33:7834鈥?8. CrossRef
    14. Raemdonck K, Remaut K, Lucas B, Sanders NN, Demeester J, De Smedt SC. In situ analysis of single-stranded and duplex siRNA integrity in living cells. Biochemistry. 2006;45:10614鈥?3. CrossRef
    15. Chen HH, Ho YP, Jiang X, Mao HQ, Wang TH, Leong KW. Quantitative comparison of intracellular unpacking kinetics of polyplexes by a model constructed from quantum dot-FRET. Mol Ther. 2008;16:324鈥?2. CrossRef
    16. Abrams MT, Koser ML, Seitzer J, / et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment. Mol Ther. 2010;18:171鈥?0. CrossRef
    17. Jiang S, Zhang Y. Upconversion nanoparticle-based FRET system for study of siRNA in live cells. Langmuir. 2010;26:6689鈥?4. CrossRef
    18. Shi B, Keough E, Matter A, / et al. Biodistribution of small interfering RNA at the organ and cellular levels after lipid nanoparticle-mediated delivery. J Histochem Cytochem. 2011;59:727鈥?0. CrossRef
    19. Alabi CA, Love KT, Sahay G, / et al. FRET-labeled siRNA probes for tracking assembly and disassembly of siRNA nanocomplexes. ACS Nano. 2012;6:6133鈥?1. CrossRef
    20. Hirsch M, Strand D, Helm M. Dye selection for live cell imaging of intact siRNA. Biol Chem. 2012;393:23鈥?5. CrossRef
    21. Zhou C, Zhang Y, Yu B, Phelps MA, Lee LJ, Lee RJ. Comparative cellular pharmacokinetics and pharmacodynamics of siRNA delivery by SPANosomes and by cationic liposomes. Nanomedicine. 2013;9:504鈥?3. CrossRef
    22. Jarve A, Muller J, Kim IH, / et al. Surveillance of siRNA integrity by FRET imaging. Nucleic Acids Res. 2007;35:e124. CrossRef
    23. Schneider S, Lenz D, Holzer M, Palme K, Suss R. Intracellular FRET analysis of lipid/DNA complexes using flow cytometry and fluorescence imaging techniques. J Control Release. 2010;145:289鈥?6. CrossRef
    24. Shaheen SM, Akita H, Yamashita A, / et al. Quantitative analysis of condensation/decondensation status of pDNA in the nuclear sub-domains by QD-FRET. Nucleic Acids Res. 2011;39:e48. CrossRef
    25. Shin S, Kwon HM, Yoon KS, Kim DE, Hah SS. FRET-based probing to gain direct information on siRNA sustainability in live cells: Asymmetric degradation of siRNA strands. Mol Biosyst. 2011;7:2110鈥?. CrossRef
    26. Hayashi Y, Noguchi Y, Harashima H. Non-linear pharmacokinetics of octaarginine-modified lipid nanoparticles: barriers from in vitro to in vivo. J Control Release. 2012;161:757鈥?2. CrossRef
    27. Yang X, Koh CG, Liu S, / et al. Transferrin receptor-targeted lipid nanoparticles for delivery of an antisense oligodeoxyribonucleotide against Bcl-2. Mol Pharm. 2009;6:221鈥?0. CrossRef
    28. Hsu SH, Yu B, Wang X, / et al. Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor. Nanomedicine. 2013;9:1169鈥?0. CrossRef
    29. Wu Y, Ho YP, Mao Y, / et al. Uptake and intracellular fate of multifunctional nanoparticles: a comparison between lipoplexes and polyplexes via quantum dot mediated Forster resonance energy transfer. Mol Pharm. 2011;8:1662鈥?. CrossRef
    30. Wang B, Hsu SH, Wang X, Kutay H, Bid HK, Yu J, / et al. Reciprocal regulation of miR-122 and c-Myc in hepatocellular cancer: Role of E2F1 and TFDP2. Hepatology. 2014;59:555鈥?6. CrossRef
    31. Bai S, Nasser MW, Wang B, / et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009;284:32015鈥?7. CrossRef
    32. Hsu SH, Wang B, Kota J, / et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 2012;122:2871鈥?3. CrossRef
    33. Whitehead KA, Sahay G, Li GZ, / et al. Synergistic silencing: combinations of lipid-like materials for efficacious siRNA delivery. Mol Ther. 2011;19:1688鈥?4. CrossRef
    34. Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123:1183鈥?. CrossRef
    35. Stanton MG, Colletti SL. Medicinal chemistry of siRNA delivery. J Med Chem. 2010;53:7887鈥?01. CrossRef
    36. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010;9:775鈥?9. CrossRef
  • 作者单位:Bo Yu (1) (2)
    Xinmei Wang (2)
    Chenguang Zhou (2) (3)
    Lesheng Teng (3) (4)
    Wei Ren (5)
    Zhaogang Yang (3)
    Chih-Hsin Shih (6)
    Tianyou Wang (7)
    Robert J. Lee (10) (2) (3) (4)
    Suoqin Tang (8)
    L. James Lee (1) (2) (9)

    1. Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
    2. NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, Ohio, USA
    3. Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
    4. College of Life Sciences, Jinlin University, Changchun, People鈥檚 Republic China
    5. Department of Physiology, The Ohio State University, Columbus, Ohio, USA
    6. Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
    7. Department of Hematology, Capital Institute of Pediatrics Affiliated Children鈥檚 Hospital, Beijing, People鈥檚 Republic
    10. 500 W. 12th Ave., Columbus, Ohio, 43210, USA
    8. Department of Pediatrics, PLA General Hospital, 20 Fuxing Road, Beijing, 100036, People鈥檚 Republic China
    9. The Ohio State University, 1012 Smith Lab, 174 West 18th Ave., Columbus, Ohio, 43210, USA
  • ISSN:1573-904X
文摘
Purpose Understanding mechanisms of cellular uptake and intracellular release would enable better design of nanocarriers for delivery of nucleic acids such as siRNA and microRNA (miRNA). Method In this study, we investigated cellular pharmacokinetics of siRNA by co-encapsulating fluorescently labeled siRNA and molecular beacon (MB) in four different formulations of cationic lipid nanoparticles (LNPs). A miRNA mimic was also used as a probe for investigating cellular pharmacokinetics, which correlated well with RNAi activities. Results We tried to find the best LNP formulation based on the combination of DOTMA and DODMA. When the DOTMA/DODMA ratio was at 5/40, the LNP containing a luciferase siRNA produced the highest gene silencing activity. The superior potency of DOTMA/DODMA could be attributed to higher uptake and improved ability to facilitate siRNA release from endosomes subsequent to uptake. Conclusions Our findings may provide new insights into RNAi transfection pathways and have implications on cationic LNP design.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700