A Prospective Proteomic-Based Study for Identifying Potential Biomarkers for the Diagnosis of Cholangiocarcinoma
详细信息    查看全文
  • 作者:Yuan Shi (1)
    Xiaxing Deng (1)
    Qian Zhan (1)
    Baiyong Shen (1)
    Xiaolong Jin (2)
    Zhecheng Zhu (1)
    Hao Chen (1)
    Hongwei Li (1)
    Chenghong Peng (1)
  • 关键词:Liver cancer ; Cholangiocarcinoma ; 2 ; D DIGE ; Proteomics ; S100 A9 ; CCTγ
  • 刊名:Journal of Gastrointestinal Surgery
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:17
  • 期:9
  • 页码:1584-1591
  • 全文大小:647KB
  • 参考文献:1. Shaib YH, El-Serag HB, Davila JA, Morgan R, McGlynn KA. Risk factors of intrahepatic cholangiocarcinoma in the United States: a case–control study. Gastroenterology 2005; 128: 620-26 CrossRef
    2. Khan SA, Davidson BR, Goldin R, Pereira SP, Rosenberg WM, Taylor-Robinson SD, Thillainayagam AV, Thomas HC, Thursz MR, Wasan H; British Society of Gastroenterology. Guidelines for the diagnosis and treatment of cholangiocarcinoma: consensus document. Gut 2002; 51 Suppl 6: VI1–VI9 CrossRef
    3. Yoon JH, Gores GJ. Diagnosis, staging, and treatment of cholangiocarcinoma. Curr Treat Options Gastroenterol 2003; 6: 105-12 CrossRef
    4. Gores GJ. Early detection and treatment of cholangiocarcinoma. Liver Transplant 2000; 6: S30 –S34 CrossRef
    5. Van Beers BE. Diagnosis of cholangiocarcinoma. HPB (Oxford) 2008; 10(2): 87-3 CrossRef
    6. Patel AH, Harnois DM, Klee GG, LaRusso NF, Gores GJ. The utility of CA 19- in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am J Gastroenterol 2000; 95: 204-07 CrossRef
    7. Leelawat K, Narong S, Wannaprasert J, Ratanashu-ek T. Prospective study of MMP7 serum levels in the diagnosis of cholangiocarcinoma. World J Gastroenterol 2010; 16(37): 4697-703 CrossRef
    8. Zhang KJ, Zhang BY, Zhang KP, Tang LM, Liu SS, Zhu DM, Zhang DL. Clinicopathologic significance of slug expression in human intrahepatic cholangiocarcinoma. World J Gastroenterol 2010; 16(20): 2554-557. CrossRef
    9. Leelawat K, Sakchinabut S, Narong S, Wannaprasert J. Detection of serum MMP-7 and MMP-9 in cholangiocarcinoma patients: evaluation of diagnostic accuracy. BMC Gastroenterol 2009; 9: 30 CrossRef
    10. Koopmann J, Thuluvath PJ, Zahurak ML, Kristiansen TZ, Pandey A, Schulick R, Argani P, Hidalgo M, Iacobelli S, Goggins M, Maitra A. Mac-2-binding protein is a diagnostic marker for biliary tract carcinoma. Cancer 2004; 101(7): 1609-615. CrossRef
    11. He YD. Genomic approach to biomarker identification and its recent applications. Cancer Biomark 2006; 2: 103-33
    12. Wittmann-Liebold B, Graack HR, Pohl T. Two dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics 2006; 6: 4688-703 CrossRef
    13. Ma Y, Peng J, Huang L, Liu W, Zhang P, Qin H. Searching for serum tumor markers for colorectal cancer using a 2-D DIGE approach. Electrophoresis 2009; 30(15): 2591-599 CrossRef
    14. Robert T, Joanne Sh, Brian M, Rachel R, Steve R, Janice Y, Francois P, Edward H, Lan C, Matthew Davison. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. PROTEOMICS 2001; 3: 377-96
    15. Manley S, Mucci NR, De Marzo AM, Rubin MA. Relational database structure to manage high-density tissue microarray data and images for pathology studies focusing on clinical outcome: the prostate Specialized Program of Research Excellence model. Am J Pathol 2001; 1599(3): 837-43 CrossRef
    16. Gebhardt C, Németh J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 2006; 72(11): 1622-631 CrossRef
    17. Lai CC, You JF, Yeh CY, Chen JS, Tang R, Wang JY, Chin CC. Low preoperative serum albumin in colon cancer: a risk factor for poor outcome. Int J Colorectal Dis 2011; 26(4): 473-81. CrossRef
    18. Coghlin C, Carpenter B, Dundas SR, Lawrie LC, Telfer C, Murray GI. Characterization and over-expression of chaperonin t-complex proteins in colorectal cancer. J Pathol 2006; 210(3): 351-57 CrossRef
    19. Hermani A, Hess J, De Servi B, Medunjanin S, Grobholz R, Trojan L, Angel P, Mayer D. Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res 2005; 11: 5146-152 CrossRef
    20. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G. S100A8/A9 activate key genes and signaling pathways in colon tumor progression. Mol Cancer Res. 2011; 9(2): 133-48 CrossRef
    21. McKiernan E, McDermott EW, Evoy D, Crown J, Duffy MJ. The role of S100 genes in breast cancer progression. Tumour Biol 2011; 32(3): 441-50 CrossRef
    22. Su YJ, Xu F, Yu JP, Yue DS, Ren XB, Wang CL. Up-regulation of the expression of S100A8 and S100A9 in lung adenocarcinoma and its correlation with inflammation and other clinical features. Chinese Medical Journal 2010; 123(16): 2215-220
    23. Jang L, He L, Fountoulakis M. Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 2004; 1023: 317-20 CrossRef
    24. Park MR, Wang EH, Jin DC, Cha JH, Lee KH, Yang CW, Kang CS, Choi YJ. Establishment of a 2-D human urinary proteomic map in IgA nephropathy. Proteomics 2006; 6: 1066-076 CrossRef
    25. Hamada S, Satoh K, Hirota M, Kanno A, Ishida K, Umino J, Ito H, Kikuta K, Kume K, Masamune A, Katayose Y, Unno M, Shimosegawa T. Calcium-binding protein S100P is a novel diagnostic marker of cholangiocarcinoma. Cancer Sci 2011; 102(1): 150-56 CrossRef
    26. Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG, Morrison RS. Biomarkers: mining the biofluid proteome. Mol Cell Proteomics 2005; 4: 409-18 CrossRef
    27. Zhou M, Conrads TP, Veenstra TD. Proteomics approaches to biomarker detection. Brief Funct Genomic Proteomic 2005; 4: 69-5 CrossRef
    28. López JL. Two-dimensional electrophoresis in proteome expression analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:190-02 CrossRef
    29. Taylor RC, Coorssen JR. Proteome resolution by two-dimensional gel electrophoresis varies with the commercial source of IPG strips. J Proteome Res 2006; 5: 2919-927 CrossRef
  • 作者单位:Yuan Shi (1)
    Xiaxing Deng (1)
    Qian Zhan (1)
    Baiyong Shen (1)
    Xiaolong Jin (2)
    Zhecheng Zhu (1)
    Hao Chen (1)
    Hongwei Li (1)
    Chenghong Peng (1)

    1. Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er RD, Shanghai, 200025, People’s Republic of China
    2. Department of Pathology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
文摘
Background Cholangiocarcinoma (CCA) is becoming a common fatal hepatic tumor. Early detection of CCA is hampered by the absence of a sufficiently accurate and noninvasive diagnostic test. Proteomic analysis would be a powerful tool to identify potential biomarkers of this cancer. Aims This study aims to identify new protein markers that are specific for CCA using proteomic approaches and to evaluate the performance of S100 calcium-binding protein A9 (S100A9) and chaperonin-containing TCR1, subunit 3 (CCTγ) as diagnostic markers for screening test of CCA. Methods Two-dimensional differential gel electrophoresis (2-D DIGE) coupled with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were used to analyze and screen biomarker candidates in the proteomes of five human CCA samples and five healthy control samples. Subsequently, two potential biomarkers, S100A9 and CCTγ, were chosen for validation and analysis by immunohistochemical methods using CCA tissue microarrays. Results Twenty protein spots were significantly elevated and five protein spots were downregulated in all patients (p-lt;-.05). The positive rate was significantly higher in patients with CCA (48?±-5?%) compared with the normal liver control group (5?±-0?%, p-lt;-.001), the hepatocellular carcinoma group (15?±-0?%, p-lt;-.001), and the cirrhosis group (12?±-6?%, p-lt;-.001). A greater proportion of patients with CCA were positive for CCTγ (72?±-8?%) compared with the normal liver control group (43?±-2?%, p-lt;-.001), the hepatocellular carcinoma group (45?±-0?%, p-lt;-.001), and the cirrhosis group (39?±-5?%, p-lt;-.001). Conclusions Combined comparative proteomic analysis using 2-D DIGE and MALDI-TOF is an effective method for identifying differentially expressed proteins in CCA tissues. The expression of S100A9 and CCTγ showed promise as novel diagnostic markers for CCA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700