Characterization and phylogenetic analysis of fifteen NtabSPL genes in Nicotiana tabacum L. cv. Qinyan95
详细信息    查看全文
  • 作者:Yao-Yao Han ; Yan-Qin Ma ; Dian-Zhen Li ; Jing-Wen Yao…
  • 关键词:AtPri ; miR156A ; Diploidization ; Nicotiana tabacum ; Nicotiana tomentosiformis ; NtabSPL ; Paternal donor
  • 刊名:Development Genes and Evolution
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:226
  • 期:1
  • 页码:1-14
  • 全文大小:650 KB
  • 参考文献:Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martinez-Rodriguez P, Möst M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, Rice AM, Ritchie MG, Seifert B, Smadja CM, Stelkens R, Szymura JM, Väinölä R, Wolf JBW, Zinner D (2013) Hybridization and speciation. J Evol Biol 26:229–246CrossRef PubMed
    Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC (2005) Cloning and characterization of micro-RNAs from moss. Plant J 43:837–848CrossRef PubMed
    Birkenbihl RP, Jach G, Saedler H, Huijser P (2005) Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. J Mol Biol 352:585–596CrossRef PubMed
    Bland MM, Matzinger DF, Levings CS III (1985) Comparison of the mitochondrial genome of Nicotiana tabacum with its progenitor species. Theor Appl Genet 69:535–541CrossRef PubMed
    Cardon G, Höhmann S, Klein J, Nettesheim K, Saedler H, Huijser P (1999) Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237:91–104CrossRef PubMed
    Fornara F, De Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550–550.e2CrossRef PubMed
    Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693CrossRef PubMed
    Garcia-Molina A, Xing S, Huijser P (2014) Functional characterisation of Arabidopsis SPL7 conserved protein domains suggests novel regulatory mechanisms in the Cu deficiency response. BMC Plant Biol 14:231PubMedCentral CrossRef PubMed
    Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522PubMedCentral CrossRef PubMed
    Hou HM, Li J, Gao M, Singer SD, Wang H, Mao LY, Fei ZJ, Wang XP (2013) Genomic organization, phylogenetic comparison and differential expression of the SBP-box family genes in grape. PLoS One 8, e59358PubMedCentral CrossRef PubMed
    Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100CrossRef PubMed
    Kenton A, Khashoggi A, Parokonny A, Bennett MD, Lichtenstein C (1995) Chromosomal location of endogenous geminivirus-related DNA sequences in Nicotiana tabacum L. Chromosom Res 3:346–350CrossRef
    Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626CrossRef PubMed
    Klein J, Saedler H, Huijser P (1996) A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet 250:7–16PubMed
    Koukalova B, Moraes AP, Renny-Byfield S, Matyasek R, Leitch AR, Kovarik A (2010) Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. New Phytol 186:148–160CrossRef PubMed
    Kropat J, Tottey S, Birkenbihl RP, Depege N, Huijser P, Merchant S (2005) A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proc Natl Acad Sci U S A 102:18730–18735PubMedCentral CrossRef PubMed
    Matassi G, Melis R, Macaya G, Bernardi G (1991) Compositional bimodality of the nuclear genome of tobacco. Nucleic Acids Res 19:5561–5567PubMedCentral CrossRef PubMed
    Matyášek R, Gazdová B, Fajkus J, Bezdĕk M (1997) NTRS, a new family of highly repetitive DNAs specific for the T1 chromosome of tobacco. Chromosoma 106:369–379CrossRef PubMed
    Murad L, Lim KY, Christopodulou V, Matyasek R, Lichtenstein CP, Kovarik A, Leitch AR (2002) The origin of tobacco’s T genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanaceae). Am J Bot 89:921–928CrossRef PubMed
    Okamuro J, Goldberg B (1985) Tobacco single-copy DNA is highly homologous to sequences present in the genomes of its diploid progenitors. Mol Gen Genet 198:290–298CrossRef
    Padmanabhan MS, Ma S, Burch-Smith TM, Czymmek K, Huijser P, Dinesh-Kumar SP (2013) Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog 9, e1003235PubMedCentral CrossRef PubMed
    Poethig RS (2013) Vegetative phase change and shoot maturation in plants. Curr Top Dev Biol 105:125–152PubMedCentral CrossRef PubMed
    Preston JC, Hileman LC (2013) Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front Plant Sci 4:80PubMedCentral PubMed
    Ren N, Timko MP (2001) AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome 44:559–571CrossRef PubMed
    Renny-Byfield S, Chester M, Kovařík A, Le Comber SC, Grandbastien MA, Deloger M, Nichols RA, Macas J, Novák P, Chase MW, Leitch AR (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843–2854CrossRef PubMed
    Renny-Byfield S, Kovařík A, Chester M, Nichols RA, Macas J, Novák P, Leitch AR (2012) Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PLoS One 7, e36963PubMedCentral CrossRef PubMed
    Riese M, Höhmann S, Saedler H, Münster T, Huijser P (2007) Comparative analysis of the SBP-box gene families in P. patens and seed plants. Gene 401:28–37CrossRef PubMed
    Salinas M, Xing S, Höhmann S, Berndtgen R, Huijser P (2012) Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato. Planta 235:1171–1184CrossRef PubMed
    Sasaki T, Yukawa Y, Miyamoto T, Obokata J, Sugiura M (2003) Identification of RNA editing sites in chloroplast transcripts from the maternal and paternal progenitors of tobacco (Nicotiana tabacum): comparative analysis shows the involvement of distinct trans-factors for ndhB editing. Mol Biol Evol 20:1028–1035CrossRef PubMed
    Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV (2013) Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14:R60PubMedCentral CrossRef PubMed
    Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833PubMedCentral CrossRef PubMed
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony method. Mol Biol Evol 28:2731–2739PubMedCentral CrossRef PubMed
    Wang JW (2014) Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot 65:4723–4730CrossRef PubMed
    Wang H, Wang H (2015) The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol Plant 8:677–688CrossRef PubMed
    Yu S, Galvão VC, Zhang YC, Horrer D, Zhang TQ, Hao YH, Feng YQ, Wang S, Schmid M, Wang JW (2012) Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors. Plant Cell 24:3320–3332PubMedCentral CrossRef PubMed
    Yu S, Lian H, Wang JW (2015) Plant developmental transitions: the role of microRNAs and sugars. Curr Opin Plant Biol 27:1–7CrossRef PubMed
    Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genomics 275:367–373CrossRef PubMed
    Zhang TQ, Lian H, Tang H, Dolezal K, Zhou CM, Yu S, Chen JH, Chen Q, Liu H, Ljung K, Wang JW (2015a) An intrinsic microRNA timer regulates progressive decline in shoot regenerative capacity in plants. Plant Cell 27:349–360PubMedCentral CrossRef PubMed
    Zhang TQ, Wang JW, Zhou CM (2015b) The role of miR156 in developmental transitions in Nicotiana tabacum. Sci China Life Sci 58:253–260CrossRef PubMed
  • 作者单位:Yao-Yao Han (1)
    Yan-Qin Ma (1)
    Dian-Zhen Li (1)
    Jing-Wen Yao (1)
    Zi-Qin Xu (1)

    1. Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi, 710069, People’s Republic of China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Developmental Biology
    Neurosciences
    Cell Biology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-041X
文摘
Fifteen SPL (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) genes were identified and characterized in Nicotiana tabacum L. cv. Qinyan95. The exon-intron structures of these genes were determined according to the coding sequences confirmed by RT-PCR and the genomic DNA sequences downloaded from the databases in Sol Genomics Network, and thirteen of them were found to carry the response element of miR156. To elucidate the origin of the validated NtabSPL genes, multiple alignments of the nucleotide sequences encompassing the open reading frames were conducted by using the orthologs in N. tabacum, Nicotiana sylvestris, Nicotiana tomentosiformis, and Nicotiana otophora. The results showed that six NtabSPL genes were derived from a progenitor of N. sylvestris, and nine NtabSPL genes were derived from a progenitor of N. tomentosiformis, further corroborating that N. tabacum came from the interspecific hybridization between the ancestors of N. sylvestris and N. tomentosiformis. In contrast to previous statements about highly repetitive sequences, the genome of N. tabacum mainly retained the paternal-derived SPL genes in diploidization process. Phylogenetic analyses based on the highly conserved SBP (SQUAMOSA PROMOTER BINDING PROTEIN) domains and the full-length amino acid sequences reveal that the SPL proteins of tobacco, tomato, and Arabidopsis can be categorized into eight groups. It is worth noting that N. tabacum contains seven NtabSPL6 genes originated from two parental genomes and NtabSPL6-2 possesses a GC-AG intron. In addition, transgenic tobacco plants harboring Arabidopsis Pri-miR156A were generated by Agrobacterium-mediated transformation method, and the constitutive expression of miR156 could obviously inhibit the activity of the NtabSPL genes containing its target site, suggesting the function of miR156 is conservative in tobacco and Arabidopsis. Keywords AtPri-miR156A Diploidization Nicotiana tabacum Nicotiana tomentosiformis NtabSPL Paternal donor

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700