Analyses on the tectonic thermal evolution and influence factors in the deep-water Qiongdongnan Basin
详细信息    查看全文
  • 作者:Zhenfeng Wang (1)
    Xiaobin Shi (2)
    Jun Yang (2) (3)
    Baojia Huang (1)
    Zhen Sun (2)
    Yahui Wang (1)
    Haiyan Jiang (2)
    Chuanhai Yu (2) (3)
    Xiaoqiu Yang (2)
  • 关键词:northern continental margin ; South China Sea ; surface heat flow ; magmatism
  • 刊名:Acta Oceanologica Sinica
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:33
  • 期:12
  • 页码:107-117
  • 全文大小:1,489 KB
  • 参考文献:1. Gong Zaisheng, Li Sitian, Xie Taijun, et al. 1997. Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea. Beijing: Science Press, 1-78
    2. He Liansheng, Wang Guangyu, Shi Xiaochao. 1980. Xisha Trough—a Cenozoic rift. Geological Revolution (in Chinese), 26(6): 486-89
    3. He Lijuan, Wang Kelin, Xiong Liangping, et al. 2001. Heat flow and thermal history of the South China Sea. Physics of the Earth and Planetary Interiors, 126: 211-20 CrossRef
    4. Huang Haibo, Qiu Xuelin, Xu Huilong, et al. 2011. Preliminary results of the earthquake observation and the onshore-offshore seismic experiments on Xisha block. Chinese Journal of Geophysics, 54: 3161-170
    5. Lebedev S, Nolet G. 2003. Upper mantle beneath Southeast Asia from S velocity tomography. J Geophys Res, 108: 20-8
    6. Lei Jianshe, Zhao Dapeng, Steinberger B, et al. 2009. New seismic constraintson the upper mantle structure of the Hainan plume. Phys Earth Planet Inter, 173(1): 33-0 CrossRef
    7. Li Sitian, Lin Changsong, Zhang Qiming, et al. 1998. Episodic rifting dynamic of marginal basins north of South China Sea and tectonic accidents since 10 Ma. Chinese Science Bulletin (in Chinese), 43(8): 797-10
    8. Li Yamin, Shi Xiaobin, Xu Huilong, et al. 2011. Analysis on activity characteristics of the Paleogene basement faults in Qiongdongnan Basin. Journal of Tropical Oceanogaphy (in Chinese), 30(6): 74-3
    9. Li Xuxuan, Zhu Guangxu. 2005. The fault system and its hydrocarbon carrier significance in Qiongdongnan basin. China Offshore Oil and Gas (in Chinese), 17(1): 1-
    10. McKenzie D. 1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40: 24-2 CrossRef
    11. Mi Lijun, Yuan Yusong, Zhang G C, et al. 2009. Charateristics and genesis of geothermal field in deep-water area of the northern South China Sea. Acta Petrolei Sinica (in Chinese), 30(1): 27-2
    12. Montelli R, Nolet G, Dahlen F A, et al. 2006. A catalogue of deep mantle plumes: new results from finite frequency tomography. Geochem Geophys Geosys, 7(11): doi: 10.1029/2006GC001248
    13. Nissen S S, Hayes D E, Yao B. 1995. Gravity heat flow, and seismic constrints on the processes of crustal extension: Northern margin of the South China Sea. Journal of Geophysical Research, 100(B11): 22447-2483 CrossRef
    14. Pang Xiong, Shen Jun, Yuan Lizhong, et al. 2006. Petroleum prospect in deep-water fan system of the Pearl River in the South China Sea. Acta Petrolei Sinica (in Chinese), 27(3): 11-6, 21
    15. Qin Jingxin, Hao Tianyao, Xu Ya, et al. 2011. The distribution characteristics and the relationship between the tectonic units of the Moho depth in South China Sea and adjacent areas. Chinese J Geophys (in Chinese), 54(12): 3171-183
    16. Qiu Xuelin, Ye Sanyu, Wu Shimin, et al. 2001. Crustal structure across the Xisha Trough, northwestern South China Sea. Tectonophysics, 341(1-): 179-93 CrossRef
    17. Rupke L H, Schmalholz S M, Schmid D W, et al. 2008. Automated thermotectonostratigraphic basin reconstruction: Viking Graben case study. Aapg Bulletin, 92: 309-26 CrossRef
    18. Shan Jingnan, Zhang Gongcheng, Wu Jingfu, et al. 2011.Thermal structure and deep temperature of Qiongdongnan Basin, Northern Margin of the South China Sea. Chinese J Geophys (in Chinese), 54(8): 2102-109
    19. Shi Xiaobin, Burov E, Leroy S, et al. 2005. Intrusion and its implication for subsidence: a case from the Baiyun Sag, on the northern margin of the South China Sea. Tectonophysics, 407: 117-34 CrossRef
    20. Shi Xiaobin, Qiu Xuelin, Xia Kanyuan, et al. 2003. Characteristics of the surface heat flow in the South China Sea. Journal of Asian Earth Sciences, 22(3): 265-77 CrossRef
    21. Shi Xiaobin, Xu Hehua, Qiu Xuelin, et al. 2008. Numerical modeling on the relationship between thermal uplift and subsequent rapid subsidence: Discussions on the evolution of the Tainan Basin. Tectonics, 27(6): TC6003, doi: 1
  • 作者单位:Zhenfeng Wang (1)
    Xiaobin Shi (2)
    Jun Yang (2) (3)
    Baojia Huang (1)
    Zhen Sun (2)
    Yahui Wang (1)
    Haiyan Jiang (2)
    Chuanhai Yu (2) (3)
    Xiaoqiu Yang (2)

    1. Zhanjiang Branch of China National Offshore Oil Corporation (CNOOC) Limited, Zhanjiang, 524057, China
    2. Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
    3. University of Chinese Academy of Sciences, Beijing, 100039, China
  • ISSN:1869-1099
文摘
To reveal the tectonic thermal evolution and influence factors on the present heat flow distribution, based on 154 heat flow data, the present heat flow distribution features of the main tectonic units are first analyzed in detail, then the tectonic thermal evolution histories of 20 profiles are reestablished crossing the main deep-water sags with a structural, thermal and sedimentary coupled numerical model. On the basis of the present geothermal features, the Qiongdongnan Basin could be divided into three regions: the northern shelf and upper slope region with a heat flow of 50-0 mW/m2, most of the central depression zone of 70-5 mW/m2, and a NE trending high heat flow zone of 85-05 mW/m2 lying in the eastern basin. Numerical modeling shows that during the syn-rift phase, the heat flow increases generally with time, and is higher in basement high area than in its adjacent sags. At the end of the syn-rift phase, the heat flow in the deepwater sags was in a range of 60-5 mW/m2, while in the basement high area, it was in a range of 75-00 mW/m2. During the post-rift phase, the heat flow decreased gradually, and tended to be more uniform in the basement highs and sags. However, an extensive magmatism, which equivalently happened at around 5 Ma, has greatly increased the heat flow values, and the relict heat still contributes about 10-5 mW/m2 to the present surface heat flow in the central depression zone and the southern uplift zone. Further analyses suggested that the present high heat flow in the deep-water Qiongdongnan Basin is a combined result of the thermal anomaly in the upper mantle, highly thinning of the lithosphere, and the recent extensive magmatism. Other secondary factors might have affected the heat flow distribution features in some local regions. These factors include basement and seafloor topography, sediment heat generation, thermal blanketing, local magmatic injecting and hydrothermal activities related to faulting and overpressure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700