Interface-facilitated energy transport in coupled Frenkel–Kontorova chains
详细信息    查看全文
  • 作者:Rui-Xia Su ; Zong-Qiang Yuan ; Jun Wang ; Zhi-Gang Zheng
  • 关键词:interface couplings ; energy transport ; heat conduction ; phonon ; phonon scattering ; Frenkel–Kontorova (FK) chains ; excited phonon modes ; phonon spectral energy density
  • 刊名:Frontiers of Physics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:11
  • 期:2
  • 全文大小:474 KB
  • 参考文献:1.A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 451(7175), 163 (2008)ADS CrossRef
    2.M. Losego, M. E. Grady, N. R. Sottos, D. G. Cahill, and P. V. Braun, Effects of chemical bonding on heat transport across interfaces, Nat. Mater. 11(6), 502 (2012)ADS CrossRef
    3.C. Yan, J. Cho, and J. Ahn, Graphene-based flexible and stretchable thin film transistors, Nanoscale 4(16), 4870 (2012)ADS CrossRef
    4.G. J. Hu and B. Y. Cao, Thermal resistance between crossed carbon nanotubes: Molecular dynamics simulations and analytical modeling, J. Appl. Phys. 14(22), 224308 (2013)ADS CrossRef
    5.R. Guo and B. Huang, Approaching the alloy limit of thermal conductivity in single-crystalline Si-based thermoelectric nanocomposites: A molecular dynamics investigation, Sci. Rep. 5, 9579 (2015)ADS CrossRef
    6.R. Guo, X. Wang, and B. Huang, Thermal conductivity of skutterudite CoSb3 from first principles: Substitution and nanoengineering effects, Sci. Rep. 5, 7806 (2015)ADS CrossRef
    7.J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)CrossRef
    8.N. P. Dasgupta and P. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)CrossRef
    9.S. Li, Y. F. Dong, D. D. Wang, W. Chen, L. Huang, C. W. Shi, and L. Q. Mai, Hierarchical nanowires for highperformance electrochemical energy storage, Front. Phys. 9(3), 303 (2014)CrossRef
    10.N. Liu, W. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)CrossRef
    11.Z. Liu and B. Li, Heat conduction in simple networks: The effect of interchain coupling, Phys. Rev. E 76(5), 051118 (2007)ADS CrossRef
    12.Z. Liu, X. Wu, H. Yang, N. Gupte, and B. Li, Heat flux distribution and rectification of complex networks, New J. Phys. 12(2), 023016 (2010)ADS CrossRef
    13.E. Scalise, M. Houssa, G. Pourtois, B. van den Broek, V. Afanas’ev, and A. Stesmans, Vibrational properties of silicene and germanene, Nano Res. 6(1), 19 (2013)CrossRef
    14.H. P. Li and R. Q. Zhang, Vacancy-defect–induced diminution of thermal conductivity in silicene, Europhys. Lett. 99(3), 36001 (2012)ADS CrossRef
    15.Q. X. Pei, Y. W. Zhang, Z. D. Sha, and V. B. Shenoy, Tuning the thermal conductivity of silicene with tensile strain and isotopic doping: A molecular dynamics study, J. Appl. Phys. 114(3), 033526 (2013)ADS CrossRef
    16.J. Shiomi and S. Maruyama, Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes, Jpn. J. Appl. Phys. 47(4), 2005 (2008)ADS CrossRef
    17.J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B 59(4), R2514 (1999)ADS CrossRef
    18.S. Berber, Y. K. Kwon, and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84(20), 4613 (2000)ADS CrossRef
    19.J. Shiomi and S. Maruyama, Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations, Phys. Rev. B 73(20), 205420 (2006)ADS CrossRef
    20.C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, Thermal conductance and thermopower of an individual single-wall carbon nanotube, Nano Lett. 5(9), 1842 (2005)ADS CrossRef
    21.B. Y. Cao and Q. W. Hou, C. Bing-Yang, and H. Quan-Wen, Thermal conductivity of carbon nanotubes embedded in solids, Chin. Phys. Lett. 25(4), 1392 (2008)ADS CrossRef
    22.A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)ADS CrossRef
    23.A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)ADS CrossRef
    24.D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Phys. Rev. B 79(15), 155413 (2009)ADS CrossRef
    25.K. Saito, J. Nakamura, and A. Natori, Ballistic thermal conductance of a graphene sheet, Phys. Rev. B 76(11), 115409 (2007)ADS CrossRef
    26.Z. Q. Ye, B. Y. Cao, W. J. Yao, T. Feng, and X. Ruan, Spectral phonon thermal properties in graphene nanoribbons, Carbon 93, 915 (2015)CrossRef
    27.R. Guo and B. Huang, Thermal transport in nanoporous Si: Anisotropy and junction effects, Int. J. Heat Mass Transfer 77, 131 (2014)MathSciNet CrossRef
    28.X. Yan, Y. Xiao, and Z. Li, Effects of intertube coupling and tube chirality on thermal transport of carbon nanotubes, J. Appl. Phys. 99(12), 124305 (2006)ADS CrossRef
    29.D. Donadio and G. Galli, Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation, Phys. Rev. Lett. 99(25), 255502 (2007)ADS CrossRef
    30.Z. Ong, E. Pop, and J. Shiomi, Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica, Phys. Rev. B 84(16), 165418 (2011)ADS CrossRef
    31.Z. Guo, D. Zhang, and X. Gong, Manipulating thermal conductivity through substrate coupling, Phys. Rev. B 84(7), 075470 (2011)ADS CrossRef
    32.Z. Ong and E. Pop, Effect of substrate modes on thermal transport in supported graphene, Phys. Rev. B 84(7), 075471 (2011)ADS CrossRef
    33.X. Zhang, H. Bao, and M. Hu, Bilateral substrate effect on the thermal conductivity of two-dimensional silicon, Nanoscale 7(14), 6014 (2015)ADS CrossRef
    34.J. Yang, Y. Yang, S.Waltermire, X.Wu, H. Zhang, T. Gutu, Y. Jiang, Y. Chen, A. Zinn, R. Prasher, T. Xu, and D. Li, Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces, Nat. Nanotechnol. 7(2), 91 (2012)ADS CrossRef
    35.O. Braun and Y. Kivshar, Nonlinear dynamics of the Frenkel–Kontorova model, Phys. Rep. 306(1), 1 (1998)ADS MathSciNet CrossRef
    36.B. Hu and L. Yang, Heat conduction in the Frenkel–Kontorova model, Chaos 15(1), 015119 (2005)ADS CrossRef
    37.L. Wang and B. Li, Thermal logic gates: Computation with phonons, Phys. Rev. Lett. 99(17), 177208 (2007)ADS CrossRef
    38.L. Wang and B. Li, Thermal memory: A storage of phononic information, Phys. Rev. Lett. 101(26), 267203 (2008)ADS CrossRef
    39.B. Hu, L. Yang, and Y. Zhang, Asymmetric heat conduction in nonlinear lattices, Phys. Rev. Lett. 97(12), 124302 (2006)ADS CrossRef
    40.J. Wang and Z. G. Zheng, Heat conduction and reversed thermal diode: The interface effect, Phys. Rev. E 81(1), 011114 (2010)ADS CrossRef
    41.E. Diaz, R. Gutierrez, and G. Cuniberti, Heat transport and thermal rectification in molecular junctions: A minimal model approach, Phys. Rev. B 84(14), 144302 (2011)ADS CrossRef
    42.B. Q. Ai and B. Hu, Heat conduction in deformable Frenkel–Kontorova lattices: Thermal conductivity and negative differential thermal resistance, Phys. Rev. E 83(1), 011131 (2011)ADS CrossRef
    43.W. R. Zhong, Different thermal conductance of the interand intrachain interactions in a double-stranded molecular structure, Phys. Rev. E 81(6), 061131 (2010)ADS CrossRef
    44.B. Hu, D. He, Y. Zhang, and L. Yang, Asymmetric heat conduction in the Frenkel–Kontorova model, Korean Phys. Soc. 50, 166 (2007)CrossRef
    45.D. He, B. Ai, H. K. Chan, and B. Hu, Heat conduction in the nonlinear response regime: Scaling, boundary jumps, and negative differential thermal resistance, Phys. Rev. E 81(4), 041131 (2010)ADS CrossRef
    46.J. Tekic, D. He, and B. Hu, Noise effects in the ac-driven Frenkel–Kontorova model, Phys. Rev. E 79(3), 036604 (2009)ADS CrossRef
    47.J. Thomas, J. E. Turney, R. Iutzi, C. Amon, and A. Mc-Gaughey, Predicting phonon dispersion relations and lifetimes from the spectral energy density, Phys. Rev. B 81(8), 081411 (2010)ADS CrossRef
    48.L. Zhu and B. Li, Low thermal conductivity in ultrathin carbon nanotube (2, 1), Sci. Rep. 4, 4917 (2014)ADS
    49.N. de Koker, Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics, Phys. Rev. Lett. 103(12), 125902 (2009)ADS CrossRef
    50.S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52(2), 255 (1984)ADS CrossRef
    51.W. G. Hoover, Canonical dynamics: Equilibrium phasespace distributions, Phys. Rev. A 31(3), 1695 (1985)ADS CrossRef
    52.W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, Cambridge: Cambridge University Press, 1992
    53.A. V. Savin and O. V. Gendelman, Heat conduction in onedimensional lattices with on-site potential, Phys. Rev. E 67(4), 041205 (2003)ADS CrossRef
    54.C. Giardiná, R. Livi, A. Politi, and M. Vassalli, Finite thermal conductivity in 1D lattices, Phys. Rev. Lett. 84(10), 2144 (2000)ADS CrossRef
    55.Q. W. Hou, B. Y. Cao, and Z. Y. Guo, Thermal conductivity of carbon nanotube: From ballistic to diffusive transport, Acta Physica Sinica 58(11), 7809 (2009) (in Chinese)
    56.A. Jain, Y. J. Yu, and A. J. McGaughey, Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm, Phys. Rev. B 87(19), 195301 (2013)ADS CrossRef
  • 作者单位:Rui-Xia Su (1)
    Zong-Qiang Yuan (2)
    Jun Wang (3)
    Zhi-Gang Zheng (4)

    1. Department of Physics and the Beijing–Hong Kong–Singapore Joint Centre for Nonlinear and Complex Systems (Beijing), Beijing Normal University, Beijing, 100875, China
    2. Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
    3. Key Laboratory of Enhanced Heat Transfer and Energy Conservation (Ministry of Education), College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
    4. College of Information Science and Engineering, Huaqiao University, Xiamen, 361021, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Chinese Library of Science
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-0470
文摘
The role of interface couplings on the energy transport of two coupled Frenkel–Kontorova (FK) chains is explored through numerical simulations. In general, it is expected that the interface couplings result in the suppression of heat conduction through the coupled system due to the additional interface phonon–phonon scattering. In the present paper, it is found that the thermal conductivity increases with increasing intensity of interface interactions for weak inter-chain couplings, whereas the heat conduction is suppressed by the interface interaction in the case of strong inter-chain couplings. Based on the phonon spectral energy density method, we demonstrate that the enhancement of energy transport results from the excited phonon modes (in addition to the intrinsic phonon modes), while the strong interface phonon–phonon scattering results in the suppressed energy transport. Keywords interface couplings energy transport heat conduction phonon-phonon scattering Frenkel–Kontorova (FK) chains excited phonon modes phonon spectral energy density

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700