Multiple characteristics analysis of Alzheimer's electroencephalogram by power spectral density and Lempel–Ziv complexity
详细信息    查看全文
  • 作者:Xiaokun Liu ; Chunlai Zhang ; Zheng Ji ; Yi Ma ; Xiaoming Shang…
  • 关键词:Electroencephalogram ; Alzheimer’s disease ; Power spectrum density ; Lempel–Ziv complexity ; Multi ; scale Lempel–Ziv complexity
  • 刊名:Cognitive Neurodynamics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:10
  • 期:2
  • 页码:121-133
  • 全文大小:5,802 KB
  • 参考文献:Abasolo D, Hornero R, Espino P, Poza J, Sanchez CI, de la Rosa R (2005) Analysis of regularity in the EEG background activity of Alzheimer’s disease patients with approximate entropy. Clin Neurophysiol 116:1826–1834CrossRef PubMed
    Abasolo D, Hornero R, Espino P, Poza J (2006a) Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiol Meas 27(3):241–253CrossRef PubMed
    Abasolo D, Hornero R, Gómez C, Garcia M, Lopez M (2006b) Analysis of EEG background activity in Alzheimer’s disease patients with Lempel–Ziv complexity and Central Tendency Measure. Med Eng Phys 28:315–322CrossRef PubMed
    Adeli H, Ghosh-Dastidar S, Dadmehr N (2007) A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans Biomed Eng 54(2):205–211CrossRef PubMed
    Ahmadlou M, Adeli H, Adeli A (2010) New diagnostic EEG markers of the Alzheimer’s disease using visibility graph. J Neural Transm 117(9):1099–1109CrossRef PubMed
    Akin M, Kiymik MK (2000) Application of periodogram and AR spectral analysis to EEG signals. J Med Syst 24:247–256CrossRef PubMed
    Babiloni C, Vecchio F, Bultrini A, Romani GL, Rossini PM (2006) Pre- and poststimulus alpha rhythms are related to conscious visual perception: a high-resolution EEG study. Cereb Cortex 16:1690–1700CrossRef PubMed
    Bennys K, Rondouin G, Vergnes C, Touchon J (2001) Diagnostic value of quantitative EEG in Alzheimer’s disease. Neurophysiol Clin 31:153–160CrossRef PubMed
    Besthorn C, Zerfass R, Geiger-Kabisch C, Sattel H, Daniel S, Schreiter-Gasser U, Forstl H (1997) Discrimination of Alzheimer’s disease and normal aging by EEG data. Electroencephalogr Clin Neurophysiol 103:241–248CrossRef PubMed
    Claus JJ, Strijers RL, Jonkman EJ, Ongerboer de Visser BW, Jonker C, Walstra GJ, Scheltens P, van Gool WA (1999) The diagnostic value of electroencephalography in mild senile Alzheimer’ disease. Clin Neurophysiol 110:825–832CrossRef PubMed
    Czigler B, Csikós D, Hidasi Z, Gaál ZA, Csibri E, Kiss E, Salacz P, Molnár M (2008) Quantitative EEG in early Alzheimer’s disease patients-power spectrum and complexity features. Int J Psychophysiol 68:75–80CrossRef PubMed
    Dauwels J, Vialatte F, Latchoumane C, Jeong J, Cichocki A (2009) Loss of EEG synchrony in early-stage AD patients: a study with multiple synchrony measures and multiple EEG data sets. In: Proceedings of the 31st annual international conference of the IEEE engineering in medicine and biology society, 2009
    Dauwels J, Vialatte F, Cichocki A (2010a) Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? Curr Alzheimer Res 7:487–505CrossRef PubMed
    Dauwels J, Vialatte F, Musha T, Cichocki A (2010b) A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. Neuroimage 49(1):668–693
    Dauwels J, Srinivasan K, Reddy MR, Musha T, Vialatte FB, Latchoumane C, Jeong J, Cichocki A (2011) Slowing and loss of complexity in Alzheimer’s EEG: two sides of the same coin? Int J Alzheimers Dis 539621
    Dringenberg HC (2000) Alzheimer’s disease: more than a ‘cholinergic disorder’-evidence that cholinergic-monoaminergic interactions contribute to EEG slowing and dementia. Behav Brain Res 115:235–249CrossRef PubMed
    Eckmann JP, Ruelle D (1992) Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Phys D 56:185–187CrossRef
    Escudero J, Abásolo D, Hornero R, Espino P, López M (2006) Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiol Meas 27(11):1091–1106CrossRef PubMed
    Gianotti LR, Künig G, Lehmann D, Faber PL, Pascual-Marqui RD, Kochi K, Schreiter-Gasser U (2007) Correlation between disease severity and brain electric LORETA tomography in Alzheimer’s disease. Neurophysiol Clin 118:186–196CrossRef
    Gómez C, Hornero R, Abásolo D, Fernández A, Escudero J (2007) Analysis of the magnetoencephalogram background activity in Alzheimer’s disease patients with auto-mutual information. Comput Methods Programs Biomed 87(3):239–247CrossRef PubMed
    Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50(5):346–349CrossRef
    Gu FJ, Meng X, Shen EH, Cai ZJ (2003) Can we measure consciousness with EEG complexities? Int J Bifurc Chaos 13:733–742CrossRef
    Han CX, Wang J, Yi GS, Che YQ (2013) Investigation of EEG abnormalities in the early stage of Parkinson’s disease. Cogn Neurodyn 7(4):351–359CrossRef PubMed PubMedCentral
    Hornero R, Abásolo D, Escudero J, Gómez C (2009) Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer’s disease. Philos Trans A Math Phys Eng Sci 367(1887):317–336CrossRef PubMed
    Jelles B, van Birgelen J, Slaets J, Hekster R, Jonkman E, Stam C (1999) Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls. Clin Neurophysiol 110:1159–1167CrossRef PubMed
    Jeong J (2004) EEG dynamics in patients with Alzheimer’s disease. Neurophysiol Clin 115:1490–1505CrossRef
    Jeong J, Kim SY, Han SH (1998) Non-linear dynamical analysis of the EEG in Alzheimer’s disease with optimal embedding dimension. Electroencephalogr Clin Neurophysiol 106:220–228CrossRef PubMed
    Jeong J, Chae JH, Kim SY, Han SH (2001) Nonlinear dynamic analysis of the EEG in patients with Alzheimer’s and vascular dementia. J Clin Neurophysiol 18:58–67CrossRef PubMed
    Jonkman EJ (1997) The role of the electroencephalogram in the diagnosis of dementia of the Alzheimer type: an attempt at technology assessment. Clin Neurophysiol 27:211–219CrossRef
    Kaspar F, Schuster HG (1987) Easily calculable measure for the complexity of spatiotemporal patterns. Phys Rev A 36:842–848CrossRef PubMed
    Koenig T, Prichep L, Dierks T, Hubl D, Wahlund LO, John ER, Jelic V (2005) Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 26:165–171CrossRef PubMed
    Kowalski JW, Gawel M, Pfeffer A, Barcikowska M (2001) The diagnostic value of EEG in Alzheimer Disease: correlation with severity of mental impariment. J Clin Neurophysiol 18:570–575CrossRef PubMed
    Lehnertz K, Mormann F, Kreuz T, Andrzejak R, Rieke C, David P, Elger C (2003) Seizure predictionby nonlinear EEG analysis. IEEE Eng Med Biol 22:57–63CrossRef
    Lempel A, Ziv J (1976) On the complexity of finite sequences. IEEE Trans Inf Theory 22:75–81CrossRef
    Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:634–639CrossRef
    Moretti DV, Fracassi C, Pievani M, Geroldi C, Binetti G, Zanetti O, Sosta K, Rossini PM, Frisoni GB (2009) Increase of theta/gamma ratio is associated with memory impairment. Clin Neurophysiol 120:295–303CrossRef PubMed
    Nunez PL, Wingeier BM, Silberstein RB (2001) Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum Brain Mapp 13:125–164CrossRef PubMed
    Park YM, Che HJ, Im CH, Jung HT, Bae SM, Lee SH (2008) Decreased EEG synchronization and its correlation with symptom severity in Alzheimer’s disease. Neurosci Res 62(2):112–117CrossRef PubMed
    Roschke J, Fell J, Beckmann P (1995) Non-linear analysis of sleep EEG data in schizophrenia: calculation of the principal Lyapunov exponent. Psychiatry Res 56:257–269CrossRef PubMed
    Schoenberg PLA, Speckens AEM (2015) Multi-dimensional modulations of α and γ cortical dynamics following mindfulness-based cognitive therapy in Major Depressive Disorder. Cogn Neurodyn 9(1):13–29CrossRef PubMed PubMedCentral
    Schreiter-Gasser U, Gasser T, Ziegler P (1994) Quantitative EEG analysis in early onset Alzheimer’s disease: correlations with severity, clinical characteristics, visual EEG and CCT. Electroencephalogr Clin Neurophysiol 90:267–272CrossRef PubMed
    Shaw FZ, Chen RF, Tsao HW, Yen CT (1999) Algorithmic complexity as an index of cortical function in awake and pentobarbital-anesthetized rats. J Neurosci Methods 93:101–110CrossRef PubMed
    Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116:2266–2301CrossRef PubMed
    Stam CJ, Jellesa B, Achtereektea HAM, Romboutsa SARB, Slaetsb JPJ, Keunena RWM (1995) Investigation of EEG non-linearity in dementia and Parkinson’s disease. Electroencephalogr Clin Neurophysiol 95:309–317CrossRef PubMed
    Stam CJ, van der Made Y, Pijnenburg YAL, Scheltens PH (2003) EEG synchronization in mild cognitive impairment and Alzheimer’s disease. Acta Neurol Scand 108:90–96CrossRef PubMed
    Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltensc P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17(1):92–99CrossRef PubMed
    van Cappellen YAL, van Walsum AM, Pijnenburg Y, Berendse H, van Dijk B, Knol D, Scheltens P, Stam C (2003) A neural complexity measure applied to MEG data in Alzheimer’s disease. Clin Neurophysiol 114:1034–1040CrossRef
    Wang R, Wang J, Yu H, Wei X, Yang C, Deng B (2014) Decreased coherence and functional connectivity of electroencephalograph in Alzheimer’s disease. Chaos 24(3):033136CrossRef PubMed
    Wang R, Wang J, Yu H, Wei X, Yang C, Deng B (2015a) Power spectral density and coherence analysis of Alzheimer’s EEG. Cogn Neurodyn 9(3):291–304CrossRef PubMed
    Wang R, Wang J, Li S, Yu H, Deng B, Wei X (2015b) Multiple feature extraction and classification of electroencephalograph signal for Alzheimers’ with spectrum and bispectrum. Chaos 25(1):013110CrossRef PubMed
    Yang CY, Lin CP (2013) Coherent activity between auditory and visual modalities during the induction of peacefulness. Cogn Neurodyn 7(4):301–309CrossRef PubMed PubMedCentral
    Yi G, Wang J, Bian H, Han C, Deng B, Wei X, Li H (2013) Multi-scale order recurrence quantification analysis of EEG signals evoked by manual acupuncture in healthy subjects. Cogn Neurodyn 7(1):79–88CrossRef PubMed PubMedCentral
    Zhang XS, Roy RJ, Jensen EW (2001) EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans Biomed Eng 48:1424–1433CrossRef PubMed
    Zhou SM, Gan JQ, Sepulveda F (2008) Classifying mental tasks based on features of higher-order statistics from EEG signals in brain–computer interface. Inf Sci 178(6):1629–1640CrossRef
    Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577PubMed
  • 作者单位:Xiaokun Liu (1)
    Chunlai Zhang (1)
    Zheng Ji (1)
    Yi Ma (1)
    Xiaoming Shang (1)
    Qi Zhang (1)
    Wencheng Zheng (1)
    Xia Li (1)
    Jun Gao (1)
    Ruofan Wang (2)
    Jiang Wang (2)
    Haitao Yu (2)

    1. Department of Cardiology, Tangshan Gongren Hospital, Hebei Medical University, Tangshan, 063000, Hebei, People’s Republic of China
    2. School of Electrical Engineering and Automation, Tianjin University, Tianjin, 300072, People’s Republic of China
  • 刊物主题:Biomedicine general; Neurosciences; Computer Science, general; Artificial Intelligence (incl. Robotics); Biochemistry, general; Cognitive Psychology;
  • 出版者:Springer Netherlands
  • ISSN:1871-4099
文摘
To investigate the electroencephalograph (EEG) background activity in patients with Alzheimer’s disease (AD), power spectrum density (PSD) and Lempel–Ziv (LZ) complexity analysis are proposed to extract multiple effective features of EEG signals from AD patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared with the control group, the relative PSD of AD group is significantly higher in the theta frequency band while lower in the alpha frequency bands. In order to explore the nonlinear information, Lempel–Ziv complexity (LZC) and multi-scale LZC is further applied to all electrodes for the four frequency bands. Analysis results demonstrate that the group difference is significant in the alpha frequency band by LZC and multi-scale LZC analysis. However, the group difference of multi-scale LZC is much more remarkable, manifesting as more channels undergo notable changes, particularly in electrodes O1 and O2 in the occipital area. Moreover, the multi-scale LZC value provided a better classification between the two groups with an accuracy of 85.7 %. In addition, we combine both features of the relative PSD and multi-scale LZC to discriminate AD patients from the normal controls by applying a support vector machine model in the alpha frequency band. It is indicated that the two groups can be clearly classified by the combined feature. Importantly, the accuracy of the classification is higher than that of any one feature, reaching 91.4 %. The obtained results show that analysis of PSD and multi-scale LZC can be taken as a potential comprehensive measure to distinguish AD patients from the normal controls, which may benefit our understanding of the disease.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700