Unexpected current–voltage characteristics of mechanically modulated atomic contacts with the presence of molecular junctions in an electrochemically assisted–MCBJ
详细信息    查看全文
  • 作者:Yang Yang ; Junyang Liu ; Shi Feng ; Huimin Wen ; Jinghua Tian ; Jueting Zheng
  • 关键词:molecular junction ; electrochemical deposition ; mechanically controllable break junction (MCBJ) ; ruthenium complex ; ferrocenyl molecular wire
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:9
  • 期:2
  • 页码:560-570
  • 全文大小:2,800 KB
  • 参考文献:[1]Xu, B. Q.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223.CrossRef
    [2]Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Reproducible measurement of single-molecule conductivity. Science 2001, 294, 571–574.CrossRef
    [3]Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a molecular junction. Science 1997, 278, 252–254.CrossRef
    [4]Hong, W. J.; Valkenier, H.; Mészáros, G.; Manrique, D. Z.; Mishchenko, A.; Putz, A.; García, P. M.; Lambert, C. J.; Hummelen, J. C.; Wandlowski, T. An MCBJ case study: The influence of π-conjugation on the single-molecule conductance at a solid/liquid interface. Beilstein J. Nanotechnol. 2011, 2, 699–713.CrossRef
    [5]Smit, R. H. M.; Noat, Y.; Untiedt, C.; Lang, N. D.; van Hemert, M. C.; van Ruitenbeek, J. M. Measurement of the conductance of a hydrogen molecule. Nature 2002, 419, 906–909.CrossRef
    [6]Park, H.; Park, J.; Lim, A. K. L.; Anderson, E. H.; Alivisatos, A. P.; McEuen, P. L. Nanomechanical oscillations in a single-C60 transistor. Nature 2000, 407, 57–60.CrossRef
    [7]Kushmerick, J. G.; Holt, D. B.; Pollack, S. K.; Ratner, M. A.; Yang, J. C.; Schull, T. L.; Naciri, J.; Moore, M. H.; Shashidhar, R. Effect of bond-length alternation in molecular wires. J. Am. Chem. Soc. 2002, 124, 10654–10655.CrossRef
    [8]Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 2006, 442, 904–907.CrossRef
    [9]Chen, L.; Wang, Y.-H.; He, B. R.; Nie, H.; Hu, R. R.; Huang, F.; Qin, A. J.; Zhou, X.-S.; Zhao, Z. J.; Tang, B. Z. Multichannel conductance of folded single-molecule wires aided by through-space conjugation. Angew. Chem. Int. Ed. 2015, 54, 4231–4235.CrossRef
    [10]Haiss, W.; Martin, S.; Scullion, L. E.; Bouffier, L.; Higgins, S. J.; Nichols, R. J. Anomalous length and voltage dependence of single molecule conductance. Phys. Chem. Chem. Phys. 2009, 11, 10831–10838.CrossRef
    [11]Hong, W. J.; Li, H.; Liu, S.-X.; Fu, Y. C.; Li, J. F.; Kaliginedi, V.; Decurtins, S.; Wandlowski, T. Trimethylsilylterminated oligo(phenylene ethynylene)s: An approach to single-molecule junctions with covalent Au–C σ-bonds. J. Am. Chem. Soc. 2012, 134, 19425–19431.CrossRef
    [12]Halbritter, A.; Makk, P.; Mackowiak, S.; Csonka, S.; Wawrzyniak, M.; Martinek, J. Regular atomic narrowing of Ni, Fe, and V nanowires resolved by two-dimensional correlation analysis. Phys. Rev. Lett. 2010, 105, 266805.CrossRef
    [13]Reddy, P.; Jang, S.-Y.; Segalman, R. A.; Majumdar, A. Thermoelectricity in molecular junctions. Science 2007, 315, 1568–1571.CrossRef
    [14]Guo, S. Y.; Zhou, G.; Tao, N. J. Single molecule conductance, thermopower, and transition voltage. Nano Lett. 2013, 13, 4326–4332.CrossRef
    [15]Djukic, D.; van Ruitenbeek, J. M. Shot noise measurements on a single molecule. Nano Lett. 2006, 6, 789–793.CrossRef
    [16]Reichert, J.; Ochs, R.; Beckmann, D.; Weber, H. B.; Mayor, M.; Löhneysen, H. V. Driving current through single organic molecules. Phys. Rev. Lett. 2002, 88, 176804.CrossRef
    [17]Qin, L. D.; Park, S.; Huang, L.; Mirkin, C. A. On-wire lithography. Science 2005, 309, 113–115.CrossRef
    [18]Sayed, S. Y.; Bayat, A.; Kondratenko, M.; Leroux, Y.; Hapiot, P.; McCreery, R. L. Bilayer molecular electronics: All-carbon electronic junctions containing molecular bilayers made with “click” chemistry. J. Am. Chem. Soc. 2013, 135, 12972–12975.CrossRef
    [19]Guo, S. Y.; Hihath, J.; Díez-Pérez, I.; Tao, N. J. Measurement and statistical analysis of single-molecule current–voltage characteristics, transition voltage spectroscopy, and tunneling barrier height. J. Am. Chem. Soc. 2011, 133, 19189–19197.CrossRef
    [20]Beebe, J. M.; Kim, B.; Gadzuk, J. W.; Daniel Frisbie, C.; Kushmerick, J. G. Transition from direct tunneling to field emission in metal–molecule–metal junctions. Phys. Rev. Lett. 2006, 97, 026801.CrossRef
    [21]Beebe, J. M.; Kim, B.; Frisbie, C. D.; Kushmerick, J. G. Measuring relative barrier heights in molecular electronic junctions with transition voltage spectroscopy. ACS Nano 2008, 2, 827–832.CrossRef
    [22]Kim, B.; Choi, S. H.; Zhu, X.-Y.; Frisbie, C. D. Molecular tunnel junctions based on π-conjugated oligoacene thiols and dithiols between Ag, Au, and Pt contacts: Effect of surface linking group and metal work function. J. Am. Chem. Soc. 2011, 133, 19864–19877.CrossRef
    [23]Wang, W. Y.; Lee, T.; Kretzschmar, I.; Reed, M. A. Inelastic electron tunneling spectroscopy of an alkanedithiol selfassembled monolayer. Nano Lett. 2004, 4, 643–646.CrossRef
    [24]Cao, H.; Ma, J.; Luo, Y. Field effects on the statistical behavior of the molecular conductance in a single molecular junction in aqueous solution. Nano Res. 2010, 3, 350–355.CrossRef
    [25]Nozaki, D.; Cuniberti, G. Silicon-based molecular switch junctions. Nano Res. 2009, 2, 648–659.CrossRef
    [26]Yang, Y.; Liu, J.-Y.; Chen, Z.-B.; Tian, J.-H.; Jin, X.; Liu, B.; Li, X. L.; Luo, Z.-Z.; Lu, M.; Yang, F.-Z. et al. Conductance histogram evolution of an EC-MCBJ fabricated Au atomic point contact. Nanotechnology 2011, 22, 275313.CrossRef
    [27]Agraït, N.; Yeyati, A. L.; van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 2003, 377, 81–279.CrossRef
    [28]Lörtscher, E.; Weber, H. B.; Riel, H. Statistical approach to investigating transport through single molecules. Phys. Rev. Lett. 2007, 98, 176807.CrossRef
    [29]Yang, Y.; Chen, Z. B.; Liu, J. Y.; Lu, M.; Yang, D. Z.; Yang, F. Z.; Tian, Z. Q. An electrochemically assisted mechanically controllable break junction approach for single molecule junction conductance measurements. Nano Res. 2011, 4, 1199–1207.CrossRef
    [30]Xiao, X. Y.; Xu, B. Q.; Tao, N. J. Measurement of single molecule conductance: Benzenedithiol and benzenedimethanethiol. Nano Lett. 2004, 4, 267–271.CrossRef
    [31]Tsutsui, M.; Taniguchi, M.; Kawai, T. Atomistic mechanics and formation mechanism of metal−molecule−metal junctions. Nano Lett. 2009, 9, 2433–2439.CrossRef
    [32]Ghosh, S.; Halimun, H.; Mahapatro, A. K.; Choi, J.; Lodha, S.; Janes, D. Device structure for electronic transport through individual molecules using nanoelectrodes. Appl. Phys. Lett. 2005, 87, 233509.CrossRef
    [33]Kim, Y.; Pietsch, T.; Erbe, A.; Belzig, W.; Scheer, E. Benzenedithiol: A broad-range single-channel molecular conductor. Nano Lett. 2011, 11, 3734–3738.CrossRef
    [34]Nara, J.; Geng, W. T.; Kino, H.; Kobayashi, N.; Ohno, T. Theoretical investigation on electron transport through an organic molecule: Effect of the contact structure. J. Chem. Phys. 2004, 121, 6485–6492.CrossRef
    [35]Tsutsui, M.; Teramae, Y.; Kurokawa, S.; Sakai, A. Highconductance states of single benzenedithiol molecules. Appl. Phys. Lett. 2006, 89, 163111.CrossRef
    [36]Pontes, R. B.; Rocha, A. R.; Sanvito, S.; Fazzio, A.; da Silva, A. J. R. Ab initio calculations of structural evolution and conductance of benzene-1,4-dithiol on gold leads. ACS Nano 2011, 5, 795–804.CrossRef
    [37]Haiss, W.; Wang, C. S.; Jitchati, R.; Grace, I.; Martín, S.; Batsanov, A. S.; Higgins, S. J.; Bryce, M. R.; Lambert, C. J.; Jensen, P. S. et al. Variable contact gap single-molecule conductance determination for a series of conjugated molecular bridges. J. Phys-Condens. Mat. 2008, 20, 374119.CrossRef
    [38]Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Observation of molecular orbital gating. Nature 2009, 462, 1039–1043.CrossRef
    [39]Trouwborst, M. L.; Martin, C. A.; Smit, R. H. M.; Guédon, C. M.; Baart, T. A.; van der Molen, S. J.; van Ruitenbeek, J. M. Transition voltage spectroscopy and the nature of vacuum tunneling. Nano Lett. 2011, 11, 614–617.CrossRef
    [40]Zhou, X.-S.; Liu, L.; Fortgang, P.; Lefevre, A.-S.; Serra-Muns, A.; Raouafi, N.; Amatore, C.; Mao, B.-W.; Maisonhaute, E.; Schöllhorn, B. Do molecular conductances correlate with electrochemical rate constants? Experimental insights. J. Am. Chem. Soc. 2011, 133, 7509–7516.CrossRef
    [41]Tian, J.-H.; Yang, Y.; Zhou, X.-S.; Schöllhorn, B.; Maisonhaute, E.; Chen, Z.-B.; Yang, F.-Z.; Chen, Y.; Amatore, C.; Mao, B.-W. et al. Electrochemically assisted fabrication of metal atomic wires and molecular junctions by MCBJ and STM-BJ methods. ChemPhysChem 2010, 11, 2745–2755.CrossRef
    [42]Kolb, D. M.; Ullmann, R.; Will, T. Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunneling microscope. Science 1997, 275, 1097–1099.CrossRef
    [43]Huang, Z. F.; Chen, F.; Bennett, P. A.; Tao, N. J. Single molecule junctions formed via Au-thiol contact: Stability and breakdown mechanism. J. Am. Chem. Soc. 2007, 129, 13225–13231.CrossRef
    [44]Wen, H.-M.; Yang, Y.; Zhou, X.-S.; Liu, J.-Y.; Zhang, D.-B.; Chen, Z.-B.; Wang, J.-Y.; Chen, Z.-N.; Tian, Z.-Q. Electrical conductance study on 1,3-butadiyne-linked dinuclear ruthenium(II) complexes within single molecule break junctions. Chem. Sci. 2013, 4, 2471–2477.CrossRef
    [45]Tang, Y. A.; Yan, J. W.; Zhou, X. S.; Fu, Y. C.; Mao, B. W. An STM study on nonionic fluorosurfactant zonyl FSN selfassembly on Au(111): Large domains, few defects, and good stability. Langmuir 2008, 24, 13245–13249.CrossRef
    [46]Yan, J.; Tang, Y.; Sun, C.; Su, Y.; Mao, B. STM study on nonionic fluorosurfactant zonyl FSN self-assembly on Au(100): \(\left( {\begin{array}{*{20}{c}} 3&{ - 1} \\ 1&1 \end{array}} \right)\) molecular lattice, corrugations, and adsorbate-enhanced mobility. Langmuir 2010, 26, 3829–3834.CrossRef
  • 作者单位:Yang Yang (1)
    Junyang Liu (1)
    Shi Feng (1)
    Huimin Wen (2)
    Jinghua Tian (1)
    Jueting Zheng (1)
    Bernd Schöllhorn (3)
    Christian Amatore (3)
    Zhongning Chen (2)
    Zhongqun Tian (1)

    1. Department of Chemistry/Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces and LIA CNRS NanoBioCatEchem, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, China
    2. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
    3. CNRS UMR 8640 PASTEUR and LIA CNRS NanoBioCatEchem, Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités–UPMC Paris 6, 24, rue Lhomond, 75005, Paris, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
In this article, we report on the characterization of various molecular junctions’ current–voltage characteristics (I–V curves) evolution under mechanical modulations, by employing a novel electrochemically assisted-mechanically controllable break junction (EC-MCBJ) method. For 1,4-benzenedithiol, the I–V curves measured at constant electrode pair separation show excellent reproducibility, indicating the feasibility of our EC-MCBJ method for fabricating molecular junctions. For ferrocene-bisvinylphenylmethyl dithiol (Fc-VPM), an anomalous type of I–V curve was observed by the particular control over the stepping motor. This phenomenon is rationalized assuming a model of atomic contact evolution with the presence of molecular junctions. To test this hypothesized model, a molecule with a longer length, 1,3-butadiyne-linked dinuclear ruthenium(II) complex (Ru-1), was implemented, and the I–V curve evolution was investigated under similar circumstances. Compared with Fc-VPM, the observed I–V curves show close analogy and minor differences, and both of them fit the hypothesized model well.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700