The study on serum and urine of renal interstitial fibrosis rats induced by unilateral ureteral obstruction based on metabonomics and network analysis methods
详细信息    查看全文
  • 作者:Zheng Xiang ; Hao Sun ; Xiaojun Cai ; Dahui Chen
  • 关键词:Metabonomics ; Network analysis ; Renal interstitial fibrosis ; UPLC ; Q ; TOF ; MS
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:408
  • 期:10
  • 页码:2607-2619
  • 全文大小:780 KB
  • 参考文献:1.Zhang LX, Wang F, Wang L, Wang WK, Liu BC, Liu J, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379(9818):815–22.CrossRef
    2.Liu YH. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684–96.CrossRef
    3.Choi ME, Ding Y, Il Kim S. TGF-beta signaling via TAK1 pathway: role in kidney fibrosis. Semin Nephrol. 2012;32(3):244–52.CrossRef
    4.Nishida M, Okumura Y, Sato H, Hamaoka K. Delayed inhibition of p38 mitogen-activated protein kinase ameliorates renal fibrosis in obstructive nephropathy. Nephrol Dial Transpl. 2008;23(8):2520–4.CrossRef
    5.Xiao HB, Liu RH, Ling GH, Xiao L, Xia YC, Liu FY, et al. HSP47 regulates ECM accumulation in renal proximal tubular cells induced by TGF-beta 1 through ERK1/2 and JNK MAPK pathways. Am J Physiol-Renal. 2012;303(5):F757–65.CrossRef
    6.Farris AB, Colvin RB. Renal interstitial fibrosis: mechanisms and evaluation. Curr Opin Nephrol Hy. 2012;21(3):289–300.CrossRef
    7.Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181–9.CrossRef
    8.Boelaert J, t'Kindt R, Schepers E, Jorge L, Glorieux G, Neirynck N, et al. State-of-the-art non-targeted metabolomics in the study of chronic kidney disease. Metabolomics. 2014;10(3):425–42.CrossRef
    9.Zhao YY. Metabolomics in chronic kidney disease. Clin Chim Acta. 2013;422:59–69.CrossRef
    10.Kobayashi T, Yoshida T, Fujisawa T, Matsumura Y, Ozawa T, Yanai H, et al. A metabolomics-based approach for predicting stages of chronic kidney disease. Biochem Bioph Res Co. 2014;445(2):412–6.CrossRef
    11.van der Kloet FM, Tempels FWA, Ismail N, van der Heijden R, Kasper PT, Rojas-Cherto M, et al. Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study). Metabolomics. 2012;8(1):109–19.CrossRef
    12.Zhang HY, Jia JM, Cheng JG, Ye FQ, Li XK, Gao HC. H-1 NMR-based metabonomics study on serum of renal interstitial fibrosis rats induced by unilateral ureteral obstruction. Mol Biosyst. 2012;8(2):595–601.CrossRef
    13.Bauer-Mehren A. Integration of genomic information with biological networks using Cytoscape. Methods Mol Biol. 2013;1021:37–61.CrossRef
    14.Selimkhanov J, Taylor B, Yao J, Pilko A, Albeck J, Hoffmann A, et al. Systems biology. Accurate information transmission through dynamic biochemical signaling networks. Science. 2014;346(6215):1370–3.CrossRef
    15.Biro JC. Seven fundamental, unsolved questions in molecular biology—cooperative storage and bi-directional transfer of biological information by nucleic acids and proteins: an alternative to “central dogma”. Med Hypotheses. 2004;63(6):951–62.CrossRef
    16.Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.CrossRef
    17.Emmert-Streib F, Glazko GV. Network biology: a direct approach to study biological function. Wires Syst Biol Med. 2011;3(4):379–91.CrossRef
    18.Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–90.CrossRef
    19.Liang XJ, Li HY, Li S. A novel network pharmacology approach to analyse traditional herbal formulae: the Liu-Wei-Di-Huang pill as a case study. Mol Biosyst. 2014;10(5):1014–22.CrossRef
    20.Dalcanton A, Corradi A, Stanziale R, Maruccio G, Migone L. Effects of 24-hour unilateral ureteral obstruction on glomerular hemodynamics in rat-kidney. Kidney Int. 1979;15(5):457–62.CrossRef
    21.Shengbin X, Weiming W, Nan C. Progression of renal tubulointerstitial fibrosis and expression of α-SMA, TGF-β1 and VDR in rat UUO models. J Shanghai Jiaotong University (Medical Science). 2010;30(7):752–7.
    22.Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—the Human Metabolome Database in 2013. Nucleic Acids Res. 2013;41(Database issue):D801–807.CrossRef
    23.Tautenhahn R, Cho K, Uritboonthai W, Zhu ZJ, Patti GJ, Siuzdak G. An accelerated workflow for untargeted metabolomics using the METLIN database. Nat Biotechnol. 2012;30(9):826–8.CrossRef
    24.Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45(7):703–14.CrossRef
    25.Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic acids Res 43(W1):W251–W257
    26.Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–2.CrossRef
    27.Bauer-Mehren A, Rautschka M, Sanz F, Furlong LI. DisGeNET: a Cytoscape plugin to visualize, integrate, search and analyze gene-disease networks. Bioinformatics. 2010;26(22):2924–6.CrossRef
    28.Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu YF, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42(D1):D1091–7.CrossRef
    29.Alexander SPH, Mathie A, Peters JA. Guide to Receptors and Channels (GRAC), 4th edition. Brit J Pharmacol. 2009;158:S1–S239.CrossRef
    30.Qin C, Zhang C, Zhu F, Xu F, Chen SY, Zhang P, et al. Therapeutic target database update 2014: a resource for targeted therapeutics. Nucleic Acids Res. 2014;42(D1):D1118–23.CrossRef
    31.Floras JS, Aylward PE, Victor RG, Mark AL, Abboud FM. Epinephrine facilitates neurogenic vasoconstriction in humans. J Clin Invest. 1988;81(4):1265–74.CrossRef
    32.Abrass CK. Lipid metabolism and renal disease. Obesity and the Kidney. 2006;151:106–21.CrossRef
    33.Lamaziere A, Wolf C, Quinn PJ. Perturbations of lipid metabolism indexed by lipidomic biomarkers. Metabolites. 2012;2(1):1–18.CrossRef
    34.Kovacs KR, Bajko Z, Szekeres CC, Csapo K, Olah L, Magyar MT, et al. Elevated LDL-C combined with hypertension worsens subclinical vascular impairment and cognitive function. J Am Soc Hypertens. 2014;8(8):550–60.CrossRef
    35.Jung S, Kim M, Ryu HJ, Chae JS, Lee SH, Lee JH. Age-related increase in LDL-cholesterol is associated with enhanced oxidative stress and disturbed sphingolipid metabolism. Metabolomics. 2015;11(1):40–9.CrossRef
    36.Colles SM, Chisolm GM. Lysophosphatidylcholine-induced cellular injury in cultured fibroblasts involves oxidative events. J Lipid Res. 2000;41(8):1188–98.
    37.Holub BJ, Swidinsky P, Park E. Oral docosapentaenoic acid (22:5n-3) is differentially incorporated into phospholipid pools and differentially metabolized to eicosapentaenoic acid in tissues from young rats. Lipids. 2011;46(5):399–407.CrossRef
    38.Aukema HM, Yamaguchi T, Takahashi H, Celi B, Holub BJ. Abnormal lipid and fatty-acid compositions of kidneys from mice with polycystic kidney-disease. Lipids. 1992;27(6):429–35.CrossRef
    39.Phang M, Lincz LF, Garg ML. Eicosapentaenoic and docosahexaenoic acid supplementations reduce platelet aggregation and hemostatic markers differentially in men and women. J Nutr. 2013;143(4):457–63.CrossRef
    40.Aslam R, Saeed SA, Ahmed S, Connor JD. Lipoproteins inhibit platelet aggregation and arachidonic acid metabolism in experimental hypercholesterolaemia. Clin Exp Pharmacol Physiol. 2008;35(5–6):656–62.CrossRef
    41.Katayama T, Hino M, Yoshiyama S, Nakamura A, Kohama K. Hyper-contraction by the arachidonic acid of vascular smooth muscle. J Pharmacol Sci. 2005;97:245p–p.
    42.Rifai A, Sakai H, Yagame M. Expression of 5-lipoxygenase and 5-lipoxygenase activation protein in glomerulonephritis. Kidney Int. 1993;43:S95–9.
    43.Dittmann M, Hoffmann HH, Scull MA, Gilmore RH, Bell KL, Ciancanelli M, et al. A serpin shapes the extracellular environment to prevent influenza A virus maturation. Cell. 2015;160(4):631–43.CrossRef
    44.Shearer GC, Carrero JJ, Heimburger O, Barany P, Stenvinkel P. Plasma fatty acids in chronic kidney disease: nervonic acid predicts mortality. J Renal Nutr. 2012;22(2):277–83.CrossRef
    45.Boyle J. Biology must develop its own big-data systems. Nature. 2013;499(7456):7.CrossRef
    46.Werner E. Life: an introduction to complex systems biology. Nature. 2007;446(7135):493–4.CrossRef
    47.Alroy I, Yarden Y. Signal transduction by growth factors: Information transfer and processing by biological networks. Nato Adv Sci I a-Lif. 1999;309:142–66.
    48.Shaitan KV. Conformational dynamics and new approaches to the physical-mechanisms of elementary acts of mass-transfer, energy transformation, and information-transmission in biological macromolecular structures. Mol Biol. 1994;28(3):444–9.
    49.Grossman A. Information-transfer in biological-systems—targeting of proteins to specific organelles or to the extracellular environment (secretion). Comp Biochem Phys B. 1988;91(3):389–424.
    50.Zhou X, Kao MC, Wong WH. Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci U S A. 2002;99(20):12783–8.CrossRef
    51.Lan HY, Chung ACK. TGF-beta/Smad signaling in kidney disease. Semin Nephrol. 2012;32(3):236–43.CrossRef
    52.Provost P, Samuelsson B, Radmark O. Interaction of 5-lipoxygenase with cellular proteins. Proc Natl Acad Sci U S A. 1999;96(5):1881–5.CrossRef
    53.Hill LM, Gavala ML, Lenertz LY, Bertics PJ. Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J Immunol. 2010;185(5):3028–34.CrossRef
    54.Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, et al. P2X(7) receptor-Pannexin1 complex, pharmacology and signaling. (vol 295, pg C752. Am J Physiol-Cell Ph. 2008;296(3):C639–9.
    55.Fu Y, Katsuya T, Matsuo A, Yamamoto K, Akasaka H, Takami Y, et al. Relationship of bradykinin B2 receptor gene polymorphism with essential hypertension and left ventricular hypertrophy. Hypertens Res. 2004;27(12):933–8.CrossRef
    56.Illi A, Kampman I, Anttila S, Roivas M, Mattila KM, Lehtimaki T, et al. Interaction between angiotensin-converting enzyme and catechol-O-methyltransferase genotypes in schizophrenics with poor response to conventional neuroleptics. Eur Neuropsychopharm. 2003;13(3):147–51.CrossRef
    57.Deschaepdryver A, Kirshner N (1961) Metabolism of adrenaline after blockade of monoamine oxidase and catechol-O-methyltransferase. Science 133 (345):586-&
  • 作者单位:Zheng Xiang (1) (2)
    Hao Sun (2)
    Xiaojun Cai (2)
    Dahui Chen (2)

    1. School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
    2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
Transmission of biological information is a biochemical process of multistep cascade from genes/proteins to metabolites. However, because most metabolites reflect the terminal information of the biochemical process, it is difficult to describe the transmission process of disease information in terms of the metabolomics strategy. In this paper, by incorporating network and metabolomics methods, an integrated approach was proposed to systematically investigate and explain the molecular mechanism of renal interstitial fibrosis. Through analysis of the network, the cascade transmission process of disease information starting from genes/proteins to metabolites was putatively identified and uncovered. The results indicated that renal fibrosis was involved in metabolic pathways of glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and arachidonic acid metabolism, riboflavin metabolism, tyrosine metabolism, and sphingolipid metabolism. These pathways involve kidney disease genes such as TGF-β1 and P2RX7. Our results showed that combining metabolomics and network analysis can provide new strategies and ideas for the interpretation of pathogenesis of disease with full consideration of “gene-protein-metabolite.”

Graphical Abstract ᅟ

Keywords Metabonomics Network analysis Renal interstitial fibrosis UPLC-Q-TOF-MS Electronic supplementary materialThe online version of this article (doi:10.​1007/​s00216-016-9368-4) contains supplementary material, which is available to authorized users.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700