A Spalart–allmaras Turbulence Model Implementation for High-order Discontinuous Galerkin Solution of the Reynolds-averaged Navier-stokes Equations
详细信息    查看全文
  • 作者:Jiang ZhenHua ; Yan Chao ; Yu Jian ; Qu Feng ; Yuan Wu
  • 关键词:Discontinuous Galerkin method ; SA turbulence model ; HWENO limiter ; Positivity preserving ; High order
  • 刊名:Flow, Turbulence and Combustion
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:96
  • 期:3
  • 页码:623-638
  • 全文大小:2,294 KB
  • 参考文献:1.Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNet CrossRef MATH
    2.Cockburn, B., Karniadakis, G., Shu, C.W.: The development of discontinuous Galerkin method. In: Cockburn, B., Karniadakis, G., Shu, C.W. (eds.) Discontinuous Galerkin Methods, Theory, Computation, and Applications, Lecture Notes in Computational Science and Engineering, pp 5–50. Springer, New York (2000)
    3.Crivellini, A., Bassi, F.: An implicit matrix-free discontinuous Galerkin solver for viscous and turbulent aerodynamic simulations. Comput. Fluids 50, 81–93 (2011)MathSciNet CrossRef MATH
    4.Bassi, F., Crivellini, A., Rebay, S., et al.: Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k– ω turbulence model equations. Comput. Fluids 34, 507–540 (2005)CrossRef MATH
    5.Nguyen, N.C., Persson, P.O., Peraire, J.: RANS solutions using high order discontinuous Galerkin methods. AIAA Paper, 2007, AIAA-2007-914
    6.Landmann, B., Kessler, M., Wagner, S., et al.: A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows. Comput. Fluids 37, 427–438 (2008)MathSciNet CrossRef MATH
    7.Oliver, T.A.A.: high-order, adaptive, discontinuous Galerkin finite element method for the Reynolds averaged Navier-Stokes equations. Dissertation for the Doctoral Degree. Massachusetts Institute of Technology, Boston (2008)
    8.Moro, D., Nguyen, N., Peraire, J.: Navier-Stokes solution using hybridizable discontinuous Galerkin methods. AIAA Paper, 2011, AIAA-2011-3407
    9.Burgess, N.K., Mavriplis, D.J.: Robust computation of turbulent flows using a discontinuous Galerkin method. AIAA Paper, 2012, AIAA-2012-0457
    10.Crivellini, A., D’Aalessandro, V., Bassi, F.: A Spalart–Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows. J. Comput. Phys. 241, 388–415 (2013)CrossRef
    11.Wang, L., Anderson, W.K., Erwin, J.T., et al.: Solutions of high-order methods for three-dimensional compressible viscous flows. AIAA Paper, 2012, AIAA-2012-2836
    12.Qiu, J., Shu, C.W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one dimensional case. J. Comput. Phys. 193, 115–135 (2004)MathSciNet CrossRef MATH
    13.Luo, H., Baum, J.D., Lohner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys. 225, 686–713 (2007)MathSciNet CrossRef MATH
    14.Zhu, J., Qiu, J.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method III: unstructured meshes. J. Sci. Comput. 39, 293–321 (2009)MathSciNet CrossRef MATH
    15.Jiang, Z.H., Yan, C., Yu, J., et al.: Hermite WENO-based limiters for high order discontinuous Galerkin method on unstructured grids. Acta Mech. Sin. 28, 1–12 (2012)MathSciNet CrossRef MATH
    16.Zhang, X., Shu, C.W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)MathSciNet CrossRef MATH
    17.Zhang, X., Shu, C.W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)MathSciNet CrossRef MATH
    18.Zhang, Y., Zhang, X., Shu, C.W.: Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection–diffusion equations on triangular meshes. J. Comput. Phys. 234, 295–316 (2013)MathSciNet CrossRef MATH
    19.Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. La Rech. Aerospatiale 1, 5–21 (1994)
    20.Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. AIAA Paper, 2006, AIAA-2006-112
    21.Rumsey, C.: Apparent transition behavior of widely-used turbulence models. AIAA Paper, 2006, AIAA-2006-3906
    22.Xiao, Z., Chen, H., Li, Q., et al.: A primary study of transitions in turbulence models. Chin. J. Comput. Phys. 23, 61–65 (2006)
    23.Rumsey, C., Spalart, P.: Turbulence model behavior in low Reynolds number regions of aerodynamic flowfields. AIAA J. 47, 983–993 (2009)
    24.Fu, S., Wang, L.: RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory. Prog. Aerosp. Sci. 58, 36–59 (2013)CrossRef
    25.Tu, G., Deng, X., Mao, M.: Validation of a RANS transition model using a high-order weighted compact nonlinear scheme. Sci. China Phys. Mech. Astron. 56, 805–811 (2013)CrossRef
    26.AGARD. Experimental data base for computer program assessment. Report of the Fluid Dynamics Panel Working Group 04, AGARD-AR-138. 1979
    27.Klausmeyer, S.M., Lin, J.C.: Comparative results from a CFD challenge over a 2D three-element high-lift airfoil. NASA Technical Memorandum 112858 (1997)
    28.Valarezo, W.O., Mavriplis, D.J.: Navier-Stokes applications to high-lift airfoil analysis. AIAA J. Aircr. 32, 618–624 (1995)CrossRef
    29.Allmaras, S.R., Johnson, F.T., Spalart, P.R.: Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model. Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii (2012). ICCFD7-1902
  • 作者单位:Jiang ZhenHua (1)
    Yan Chao (1)
    Yu Jian (1)
    Qu Feng (1)
    Yuan Wu (2)

    1. College of Aeronautics Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
    2. Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100190, China
  • 刊物类别:Engineering
  • 刊物主题:Physics
    Mechanics
    Automotive Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-1987
文摘
A novel and robust approach has been proposed for the high-order discontinuous Galerkin (DG) discretization of the Reynolds-averaged Navier-Stokes (RANS) equations with the turbulence model of Spalart-Allmaras (SA). The solution polynomials of the SA equation are reconstructed by the Hermite weighted essentially non-oscillatory (HWENO) scheme. Several practical techniques are suggested to simplify and extend a positivity-preserving limiter to further guarantee the positivity of SA working variable. The resulting positivity-preserving HWENO limiting method is compact and easy to implement on arbitrary meshes. Typical turbulent flows are conducted to assess the accuracy and robustness of the present method. Numerical experiments demonstrate that with the increasing grid or order resolution, the limited results of the working variable are getting closer to the unlimited ones. And the most obvious improvement with proposed method is on the computation of the working variable field in wake regions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700