AKT Pathway Affects Bone Regeneration in Nonunion Treated with Umbilical Cord-Derived Mesenchymal Stem Cells
详细信息    查看全文
  • 作者:Zhiguo Qu ; Shengnan Guo ; Guojun Fang ; Zhenghong Cui…
  • 关键词:AKT ; hUC ; MSC ; BMP ; 2 ; OPG ; BSP ; BGP ; Nonunion
  • 刊名:Cell Biochemistry and Biophysics
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:71
  • 期:3
  • 页码:1543-1551
  • 全文大小:1,297 KB
  • 参考文献:1.Einhorn, T. A., & Lee, C. A. (2001). Bone regeneration: new findings and potential clinical applications. Journal of American Academy of Orthopaedic Surgeons, 9, 157-65.
    2.Cherry, D. K., & Woodwell, D. A. (2002). National ambulatory medical care survey: 2000 summary. Advance Data, 5, 1-2.
    3.Boden, S. D. (2002). Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine, 27, S26–S31.View Article PubMed
    4.Deschaseaux, F., Sensebe, L., & Heymann, D. (2009). Mechanisms of bone repair and regeneration. Trends in Molecular Medicine, 15, 417-29.View Article PubMed
    5.Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143-47.View Article PubMed
    6.Mitchell, K. E., Weiss, M. L., Mitchell, B. M., et al. (2003). Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells, 21, 50-0.View Article PubMed
    7.Sarugaser, R., Lickorish, D., Baksh, D., et al. (2005). Human umbilical cord perivascular (HUCPV) cells: A source of mesenchymal progenitors. Stem Cells, 23, 220-29.View Article PubMed
    8.Wang, H. S., Hung, S. C., Peng, S. T., et al. (2004). Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells, 22, 1330-337.View Article PubMed
    9.Wagner, E. R., He, B. C., Chen, L., et al. (2010). Therapeutic Implications of PPARgamma in human osteosarcoma. PPAR Research, 2010, 956427.View Article PubMed Central PubMed
    10.Tang, N., Song, W. X., Luo, J., Haydon, R. C., & He, T. C. (2008). Osteosarcoma development and stem cell differentiation. Clinical Orthopaedics and Related Research, 466, 2114-130.View Article PubMed Central PubMed
    11.Marie, P. J. (2012). Signaling pathways affecting skeletal health. Current Osteoporosis Reports, 10, 190-98.View Article PubMed
    12.Moon, J. B., Kim, J. H., Kim, K., Youn, B. U., Ko, A., Lee, S. Y., & Kim, N. (2012). AKT induces osteoclast differentiation through regulating the GSK3β/NFATc1 signaling cascade. Journal of Immunology, 188, 163-69.View Article
    13.Lee, S. E., Woo, K. M., Kim, S. Y., Kim, H. M., Kwack, K., Lee, Z. H., & Kim, H. H. (2002). The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone, 30, 71-7.View Article PubMed
    14.Qu, Z., Guo, L., Fang, G., Cui, Z., Guo, S., & Liu, Y. (2012). Biological characteristics and effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) grafting with blood plasma on bone regeneration in rats. Cell Biochemistry and Biophysics, 63, 171-81.View Article PubMed
    15.Liu, Y., Huo, X., Pang, X. F., Zong, Z. H., Meng, X., & Liu, G. L. (2008). Musclin inhibits insulin activation of AKT/protein kinase B in rat skeletal muscle. Journal of International Medical Research, 36, 496-04.View Article PubMed
    16.Wang, E. A., Rosen, V., D’Alessandro, J. S., et al. (1990). Recombinant human bone morphogenetic protein induces bone formation. Proceedings of the National Academy of Sciences United States of America, 87, 2220.View Article
    17.Chikazu, D., Li, X., Kawaguchi, H., et al. (2002). Bone morphogenetic protein 2 induces cyclo-oxygenase 2 in osteoblasts via a Cbfal binding site: Role in effects of bone morphogenetic protein 2 in vitro and in vivo. Journal of Bone and Mineral Research, 17, 1430.View Article PubMed
    18.Wang, C. K., Ho, M. L., Wang, G. J., Chang, J. K., Chen, C. H., Fu, Y. C., et al. (2009). Controlled-release of rhBMP-2 carriers in the regeneration of osteonecrotic bone. Biomaterials, 30, 4178.View Article PubMed
    19.Huang, Z., Ren, P. G., Ma, T., Smith, R. L., & Goodman, S. B. (2010). Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability. Cytokine, 51, 305-10.View Article PubMed
    20.Noel, D., Gazit, D., Bouquet, C., Apparailly, F., Bony, C., Plence, P., et al. (2004). Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells, 22, 74-5.View Article PubMed
    21.Moore, N. M., Lin, N. J., Gallant, N. D., & Becker, M. L. (2011). Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients. Acta Biomaterialia, 7, 2091-100.View Article PubMed
    22.Cen, S., Zhang, J., Huang, F., Yang, Z., & Xie, H. (2008). Effect of IGF-1 on proliferation and differentiation of primary human embryonic myoblasts. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 22, 84-7.PubMed
    23.McGonnell, I. M., Grigoriadis, A. E., Lam, E. W. F., Price, J. S., & Sunters, A. (2012). A specific role for phosphoinositide 3-kinase and AKT in osteoblasts? Frontiers in Endocrinology, 3, 88.View Article PubMed Central PubMed
    24.Sambrook, P., Cooper, C. (2006) Osteoporosis Lancet. pp. 2010-018.
    25.Tsuji, K., Bandyopadhyay, A., Harfe, B. D., Cox, K., Kakar, S.,
  • 作者单位:Zhiguo Qu (1) (2)
    Shengnan Guo (2) (3)
    Guojun Fang (1) (2)
    Zhenghong Cui (1) (2)
    Ying Liu (3)

    1. Department of Orthopaedic Surgery, Siping Hospital Affiliated to China Medical University, Siping, Jilin, China
    2. Tuhua Bioengineering Company Ltd, Siping, Jilin, China
    3. Department of Stem Cell Clinical Application Centre, Siping Hospital Affiliated to China Medical University, No. 89, Nanyingbin Road, Tiexi District, Siping, 136000, Jilin, China
  • 刊物主题:Biochemistry, general; Pharmacology/Toxicology; Biotechnology; Cell Biology; Biophysics and Biological Physics;
  • 出版者:Springer US
  • ISSN:1559-0283
文摘
We have previously grafted human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) with blood plasma to treat rat tibia nonunion. To further examine the biological characteristics of this process, we applied an established hUC-MSCs-treated rat nonunion model with the addition of an inhibitor of AKT. SD rats (80) were randomly divided into four groups: a fracture group (positive control); a nonunion group (negative control); a hUC-MSCs grafting with blood plasma group; and a hUC-MSCs grafting with blood plasma & AKT blocker group. The animals were sacrificed under deep anesthesia at 4 and 8?weeks post fracture for analysis. The fracture line became less defined at 4?weeks and disappeared at 8?weeks postoperatively in both the hUC-MSCs grafting with blood plasma and grafting with blood plasma & the AKT blocker, which is similar to the fracture group. Histological immunofluorescence studies showed that the numbers of hUC-MSCs in the calluses were significantly higher in the hUC-MSCs grafting with blood plasma than those in group with the AKT blocker. More bone morphogenetic protein 2 and bone sialoprotein expression and less osteoprotegerin and bone gla protein expression were observed in the AKT blocker group compared to the hUC-MSCs grafting with blood plasma. AKT gene expression in the AKT blocker group was decreased 50?% compared to the hUC-MSCs with plasma group and decreased 70?% compared to the fracture group, while the elastic modulus was decreased. In summary, our work demonstrates that AKT may play a role in modulating osteogenesis induced by hUC-MSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700