Self-templated formation of tremella-like MoS2 with expanded spacing of (002) crystal planes for Li-ion batteries
详细信息    查看全文
  • 作者:Guoxin Qu ; Jianli Cheng ; Zhiyu Wang ; Bin Wang ; Shiyong Ye
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:51
  • 期:10
  • 页码:4739-4747
  • 全文大小:2,430 KB
  • 参考文献:1.Dong L, Namburu R, O’Regan T et al (2014) Theoretical study on strain-induced variations in electronic properties of monolayer MoS2. J Mater Sci 49:6762–6771. doi:10.​1007/​s10853-014-8370-5 CrossRef
    2.Xie D, Su Q, Zhang J et al (2014) Graphite oxide-assisted sonochemical preparation of α-Bi2O3 nanosheets and their high-efficiency visible light photocatalytic activity. J Mater Sci 49:218–224. doi:10.​1007/​s10853-013-7695-9 CrossRef
    3.Jia X, Chen Z, Suwarnasarn A et al (2012) High-performance flexible lithium-ion electrodes based on robust network architecture. Energy Environ Sci 5:6845–6849CrossRef
    4.Guan Q, Cheng J, Wang B et al (2014) Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl Mater Interfaces 6:7626–7632CrossRef
    5.Krishnan D, Kim F, Luo J et al (2012) Energetic graphene oxide: challenges and opportunities. Nano Today 7:137–152CrossRef
    6.Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRef
    7.Chen X, Qiu L, Ren J et al (2013) Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater 25:6436–6441CrossRef
    8.Li X, Zhou M, Xu H et al (2014) Synthesis and electrochemical performances of a novel two-dimensional nanocomposite: polyaniline-coated laponite nanosheets. J Mater Sci 49:6830–6837. doi:10.​1007/​s10853-014-8385-y CrossRef
    9.Lee S-H, Sridhar V, Jung J-H et al (2013) Graphene–nanotube–iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 7:4242–4251CrossRef
    10.Yue W, Lin Z, Jiang S et al (2012) Preparation of graphene-encapsulated mesoporous metal oxides and their application as anode materials for lithium-ion batteries. J Mater Chem 22:16318–16323CrossRef
    11.Wu HB, Lou XWD, Hng HH (2012) Titania nanosheets hierarchically assembled on carbon nanotubes as high-rate anodes for lithium-ion batteries. Chem-eur J 18:3132–3135CrossRef
    12.Tao L, Zai J, Wang K et al (2012) Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. J Power Sources 202:230–235CrossRef
    13.Lu LQ, Wang Y (2012) Facile synthesis of graphene-supported shuttle-and urchin-like CuO for high and fast li-ion storage. Electrochem Commun 14:82–85CrossRef
    14.Cheng J, Xin H, Zheng H et al (2013) One-pot synthesis of carbon coated-SnO2/graphene-sheet nanocomposite with highly reversible lithium storage capability. J Power Sources 232:152–158CrossRef
    15.Ye L, Wu C, Guo W et al (2006) MoS2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties. Chem Commun 45:4738–4740CrossRef
    16.Liang Y, Yoo HD, Li Y et al (2015) Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett 15:2194–2202CrossRef
    17.Zhang K, Zhao Y, Zhang S et al (2014) MoS2 nanosheet/Mo2C-embedded n-doped carbon nanotubes: synthesis and electrocatalytic hydrogen evolution performance. J Mater Chem A 2:18715–18719CrossRef
    18.Yu H, Yu X, Chen Y et al (2015) A strategy to synergistically increase the number of active edge sites and the conductivity of MoS2 nanosheets for hydrogen evolution. Nanoscale 7:8731–8738CrossRef
    19.Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318CrossRef
    20.Wang X, Nan F, Zhao J et al (2015) A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens Bioelectron 64:386–391CrossRef
    21.Li Y, Wang H, Xie L et al (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299CrossRef
    22.Zhang X, Luster B, Church A et al (2009) Carbon nanotube-MoS2 composites as solid lubricants. ACS Appl Mater Interfaces 1:735–739CrossRef
    23.Zhang S, Yu X, Yu H et al (2014) Growth of ultrathin MoS2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl Mater Interfaces 6:21880–21885CrossRef
    24.Hu Z, Wang L, Zhang K et al (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem 126:13008–13012CrossRef
    25.Yang L, Liu L, Zhu Y et al (2012) Preparation of carbon coated MoO2 nanobelts and their high performance as anode materials for lithium ion batteries. J Mater Chem 22:13148–13152CrossRef
    26.Liu H, Su D, Zhou R et al (2012) Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv Energy Mater 2:970–975CrossRef
    27.Ding S, Chen JS, Lou XWD (2011) Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. Chem-eur J 17:13142–13145CrossRef
    28.Yu Y, Gu L, Lang X et al (2011) Li storage in 3D nanoporous Au-supported nanocrystalline tin. Adv Mater 23:2443–2447CrossRef
    29.Murugan AV, Quintin M, Delville M-H et al (2006) Exfoliation-induced nanoribbon formation of poly(3, 4-ethylene dioxythiophene) pedot between MoS2 layers as cathode material for lithium batteries. J Power Sources 156:615–619CrossRef
    30.Liang Y, Feng R, Yang S et al (2011) Rechargeable mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv Mater 23:640–643CrossRef
    31.Xiao J, Choi D, Cosimbescu L et al (2010) Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem Mater 22:4522–4524CrossRef
    32.Yu H, Zhu C, Zhang K et al (2014) Three-dimensional hierarchical MoS2 nanoflake array/carbon cloth as high-performance flexible lithium-ion battery anodes. J Mater Chem A 2:4551–4557CrossRef
    33.Yu H, Ma C, Ge B et al (2013) Three-dimensional hierarchical architectures constructed by graphene/MoS2 nanoflake arrays and their rapid charging/discharging properties as lithium-ion battery anodes. Chem-eur J 19:5818–5823CrossRef
    34.Wang B, Cheng J, Wu Y et al (2012) Porous nio fibers prepared by electrospinning as high performance anode materials for lithium ion batteries. Electrochem Commun 23:5–8CrossRef
    35.Wang B, Cheng J, Wu Y et al (2013) Electrochemical performance of carbon/Ni composite fibers from electrospinning as anode material for lithium ion batteries. J Mater Chem A 1:1368–1373CrossRef
    36.Cheng J, Wang B, Xin HL et al (2013) Self-assembled V2O5 nanosheets/reduced graphene oxide hierarchical nanocomposite as a high-performance cathode material for lithium ion batteries. J Mater Chem A 1:10814–10820CrossRef
    37.Wang B, Xin H, Li X et al (2014) Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci Rep 4:3729
    38.Hwang H, Kim H, Cho J (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11:4826–4830CrossRef
    39.Du G, Guo Z, Wang S et al (2010) Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem Commun 46:1106–1108CrossRef
    40.Stephenson T, Li Z, Olsen B et al (2014) Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ Sci 7:209–231CrossRef
    41.Chen Y, Song B, Tang X et al (2014) Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small 10:1536–1543CrossRef
    42.Zeng Z, Sun T, Zhu J et al (2012) An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew Chem Int Ed 51:9052–9056CrossRef
    43.Zeng Z, Yin Z, Huang X et al (2011) Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int Ed 50:11093–11097CrossRef
    44.Chang K, Chen W (2011) In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun 47:4252–4254CrossRef
    45.Qian X, Lv Y, Li W et al (2011) Multiwall carbon nanotube@ mesoporous carbon with core-shell configuration: a well-designed composite-structure toward electrochemical capacitor application. J Mater Chem 21:13025–13031CrossRef
    46.Xiao J, Wang X, Yang XQ et al (2011) Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv Funct Mater 21:2840–2846CrossRef
    47.Wang J, Yang N, Tang H et al (2013) Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew Chem 125:6545–6548CrossRef
    48.Li H, Li W, Ma L et al (2009) Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route. J Alloy Compd 471:442–447CrossRef
    49.Kwon J-H, Ahn H-J, Jeon M-S et al (2010) The electrochemical properties of Li/TEGDME/MoS2 cells using multi-wall carbon nanotubes as a conducting agent. Res Chem Intermediat 36:749–759CrossRef
    50.Feng C, Ma J, Li H et al (2009) Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater Res Bull 44:1811–1815CrossRef
  • 作者单位:Guoxin Qu (1) (2)
    Jianli Cheng (2)
    Zhiyu Wang (2)
    Bin Wang (2)
    Shiyong Ye (1)

    1. College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
    2. Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Tremella-like MoS2 consisting of ultrathin nanosheets (~7 nm in thickness) is prepared via a one-pot hydrothermal reaction without using any surfactants and templates. The reaction involves transforming precursor MoO3 to polyhedral intermediate (K2NaMoO3F3 and K3Mo2O4F5) through its reaction with Na+, K+, and F− ions in the initial stage of hydrothermal reaction. Then the polyhedral intermediate acting as the sacrifice template reacts with the S2− released from a hydrolysis process of SCN− ion and transforms to tremella-like MoS2. The obtained MoS2 product exhibits expended spacing of the (002) crystal plane, which can facilitate faster lithium ions intercalation behavior. This tremella-like MoS2 used as an anode material for lithium-ion batteries shows a very high reversible capacity of 693 mA h g−1 after 50 cycles, good rate capability, and high cyclic capacity retention. Even cycled at a high current density of 4800 mA g−1, the tremella-like MoS2 still can deliver a high capacity of 252 mA h g−1. The secondary hierarchical microstructures consisting of ultrathin nanosheets are beneficial to greatly improved electrochemical performance of the MoS2 electrode.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700