Synthesis, UV response, and room-temperature ethanol sensitivity of undoped and Pd-doped coral-like SnO2
详细信息    查看全文
  • 作者:Chunliang Guo ; Zhidong Lin ; Wenlong Song ; Xuehua Wang…
  • 关键词:Coral ; like SnO2 ; Pd ; doped ; Gas sensing ; UV light
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:15
  • 期:10
  • 全文大小:544KB
  • 参考文献:1. Ahn MW, Park KS, Heo JH, Kim DW, Choi KJ, Park JG (2009) On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens Actuators B 138:168-73 CrossRef
    2. Anothainart K, Burgmair M, Karthigeyan A, Zimmer M, Eisele I (2003) Light enhanced NO2 gas sensing with tin oxide at room temperature: conductance and work function measurements. Sens Actuators B 93:580-84 CrossRef
    3. Balzar D (1999) Defect and microstructure analysis from diffraction. In: Snyder RL, Bunge HJ, Fiala J (eds) International union of crystallography monographs on crystallography, 10th Oxford University Press, New York, p 94
    4. Bruker AXS (2000) Topas V2.0: general profile and structure analysis software for powder diffraction data user manual. Bruker AXS, Karlstruhe
    5. Camagni P, Faglia G, Galinetto P, Perego C, Samoggia G, Sberveglieri G (1996) Photosensitivity activation of SnO2 thin film gas sensors at room temperature. Sens Actuators B 31:99-03 CrossRef
    6. Chen M, Wang Z, Han D, Gu F, Guo G (2011) High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials. Sens Actuators B 157:565-74 CrossRef
    7. Chen H, Liu Y, Xie S, Wu J, Zeng W, Liao C (2012) A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature. Ceram Int 38:502-09
    8. Choi JK, Hwang IS, Kim SJ, Park JS, Park SS, Jeong U, Kang YC, Lee JH (2010) Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens Actuators B 150:191-99 CrossRef
    9. Comini E, Cristalli A, Faglia G, Sberveglieri G (2000) Light enhanced gas sensing properties of indium oxide and tin dioxide sensors. Sens Actuators B 65:260-63 CrossRef
    10. Comini E, Faglia G, Sberveglieri G (2001) UV light activation of tin oxide thin films for NO2 sensing at low temperature. Sens Actuators B 78:73-7 CrossRef
    11. D’Arienzo M, Armelao L, Cacciamani A, Mari CM, Polizzi S, Ruffo R, Scotti R, Testino A, Wahba L, Morazzoni F (2010) One-step preparation of SnO2 and Pt-doped SnO2 as inverse opal thin films for gas sensing. Chem Mater 22:4083-089 CrossRef
    12. de Lacy Costello BPJ, Ewen RJ, Ratcliffe NM, Richards M (2008) Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles. Sens Actuators B 25:945-52 CrossRef
    13. Fan S, Srivastava AK, Dravid VP (2009) UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl Phys Lett 95:1421061-421061-3
    14. Gong J, Li H, Chai S, Hu S, Deng L (2010) UV-light-activated ZnO fibers for organic gas sensing at room temperature. J Phys Chem C 114:1293-298 CrossRef
    15. Guo W, Liu M, Zhang J, Sun R, Chen Y, Zeng W, Wang C (2012) Gas-sensing performance enhancement in ZnO nanostructures by hierarchical morphology. Sens Actuators B 166-67:492-99 CrossRef
    16. Huang R, Yu K, Gu C, Zhai H, Wu J, Yang M, Liu H (2010) Preparation of porous flower-shaped SnO2 nanostructures and their gas-sensing property. Sens Actuators B 147:467-74 CrossRef
    17. Kida T, Doi T, Shimanoe K (2010) Synthesis of monodispersed SnO2 nanocrystals and their remarkably high sensitivity to volatile organic compounds. Chem Mater 22:2662-667 CrossRef
    18. Lee C, Kim S, Hwang I, Lee J (2009) Glucose-mediated hydrothermal synthesis and gas sensing characteristics of WO3 hollow microspheres. Sens Actuators B 142:236-42 CrossRef
    19. Li C, Shen S, Wu G, Ma Y, Gao M, Xia C, Du T (2011) New model for a Pd-doped SnO2-based CO gas sensor and catalyst studied by online in situ X-ray photoelectron spectroscopy. J Phys Chem C 115:21258-1263 CrossRef
    20. Lin D, Song L, Yang M (2012) Highly sensitive gas sensor based on coral-like SnO2 prepared with hydrothermal treatment. Sens Actuators B 173:22-7 CrossRef
    21. Lin D, Guo L, Fu M, Song L (2013) Abnormal photoelectrical properties and gas sensing of mesoporous Sn0.9Ti0.1O2 film under UV light. Mater Lett 102-03:47-9 CrossRef
    22. Liu J, Luo T, Mouli S, Meng F, Sun B, Li M, Liu J (2010) A novel coral-like porous SnO2 hollow architecture: biomimetic swallowing growth mechanism and enhanced photovoltaic property for dye-sensitized solar cell application. Chem Commun 46:472-74 CrossRef
    23. Majid A, Tunney J, Argue S, Kington D, Post M, Margeson J, Gardner GJ (2010) Characterization of CuO phase in SnO2–CuO prepared by the modified Pechini method. J Sol-Gel Sci Technol 53:390-98 CrossRef
    24. Mishra S, Ghanshyam C, Ram N, Baipai RP, Bedi RK (2004) Detection mechanism of metal oxide gas sensors under UV radiation. Sens Actuators B 97:387-90 CrossRef
    25. Muraoka Y, Takubo N, Hiroi Z (2009) Photoinduced conductivity in tin dioxide thin films. J Appl Phys 105:103702-03702-7
    26. Mwakikunga BW, Motshekga S, Sikhwivhilu L, Moodley M, Scriba M, Malgas G, Simo A, Sone B, Maaza M, Ray SS (2013) A classification and ranking system on the H2 gas sensing capabilities of nanomaterials based on proposed coefficients of sensor performance and sensor efficiency equations. Sens Actuators B 184:170-78 CrossRef
    27. Neri G, Bonavita A, Milone C, Galvagno S (2003) Role of the Au oxidation state in the CO sensing mechanism of Au/iron oxide-based gas sensors. Sens Actuators B 93:402-08 CrossRef
    28. Prades JD, Jimenez-Diaz R, Hernandez-Ramirez F, Barth S, Cirera A, Romano-Rodriguez A, Mathur S, Morante J (2009) Equivalence between thermal and room temperature UV light-modulated response of gas sensors based on individual SnO2 nanowires. Sens Actuators B 140:337-41 CrossRef
    29. Saura J (1994) Gas-sensing properties of SnO2 pyrolytic films subjected to UV radiation. Sens Actuators B 17:211-14 CrossRef
    30. Shen B, Yamazaki T, Liu F, Meng D, Kikuta T, Nakatani N, Saito M, Mori M (2009) Microstructure and H2 gas sensing properties of undoped and Pd-doped SnO2 nanowires. Sens Actuators B 135:524-29 CrossRef
    31. Sikhwivhilu LM, Mpelane S, Mwakikunga BW, Ray SS (2012) Photoluminescence and hydrogen gas-sensing properties of titanium dioxide nanostructures synthesized by hydrothermal treatments. ACS Appl Mater Interfaces 4:1656-665 CrossRef
    32. Thabethe S, Linganiso E, Motaung D, Mashapa MG, Nkosi S, Arendse CJ, Mwakikunga BW (2013) Visible and IR photoluminescence of c-FeSi@a-Si core-shell nano-fibers produced by vapor transport. Sens Actuators B 143:113-19
    33. Wang H, Chu F, Wu M (2007) Highly sensitive gas sensors based on hollow SnO2 spheres prepared by carbon sphere template method. Sens Actuators B 120:508-13 CrossRef
    34. Xu C, Cheng X, Pan Y, Xu Q, Xiang Q, Yu J, Chu L (2008) High aspect ratio In2O3 nanowires: synthesis, mechanism and NO2 gas-sensing properties. Sens Actuators B 130:802-08 CrossRef
    35. Yao C, Shin Y, Wang Q, Windisch CF, Samuels WD, Arey BW, Wang C, Risen WM, Exarhos GJ (2007) Hydrothermal dehydration of aqueous fructose solutions in a closed system. J Phys Chem C 111:15141-5145 CrossRef
    36. Zeng W, Liu M (2010) Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism. Physica B 405:1345-348 CrossRef
    37. Zhai L, Wang L, Wang J, Lin H, He Q, Xie F (2012) UV-illumination room-temperature gas sensing activity of carbon-doped ZnO microspheres. Sens Actuators B 161:292-97 CrossRef
    38. Zhang Y, Li P, An M, He L (2010) Highly porous SnO2 fibers by electrospinning and oxygen plasma etching and its ethanol-sensing properties. Sens Actuators B 144:43-8 CrossRef
  • 作者单位:Chunliang Guo (1)
    Zhidong Lin (1)
    Wenlong Song (1)
    Xuehua Wang (1)
    Yangyi Huang (1)
    Ke Wang (1)

    1. Provincial Key Laboratory of Plasma Chemistry & Advanced Materials, Wuhan Institute of Technology, Wuhan, 430074, People’s Republic of China
  • ISSN:1572-896X
文摘
Coral-like mesoporous SnO2 was synthesized by controlled hydrolysis of SnCl4 and subsequent removal of the template by calcination in air. The obtained powder was doped directly with palladium chloride solution. The morphology, crystal structure, specific surface area, and photoelectrical and ethanol gas-sensing properties of undoped and Pd-doped coral-like SnO2 were investigated. The average crystalline sizes of undoped and Pd-doped SnO2 were estimated by Williamson–Hall plots to be 10.3 and 10.0?nm, respectively. From the N2 adsorption–desorption analysis, the pure sample had a surface area 63.3?m2/g with pore size distribution narrowly centered around 5.7?nm. The film sensors based on undoped and Pd-doped SnO2 exhibited novel photoelectrical properties. The photocurrents of the sensors decreased with increasing UV light intensity. The response of the Pd-doped SnO2 sensor to 500 ppm ethanol was 35.3 under UV illumination at room temperature. The results demonstrated that Pd doping could achieve room-temperature detection to ethanol under UV light radiation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700