Protection of quantum correlations against decoherence
详细信息    查看全文
  • 作者:Chunfang Sun ; Zhihua Chen ; Gangcheng Wang ; Chunfeng Wu…
  • 关键词:Decoherence ; Bell nonlocality ; Quantum discord
  • 刊名:Quantum Information Processing
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:15
  • 期:2
  • 页码:773-790
  • 全文大小:2,342 KB
  • 参考文献:1.Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)CrossRef ADS MathSciNet MATH
    2.Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)
    3.Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)CrossRef ADS
    4.Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)CrossRef ADS MathSciNet MATH
    5.Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for non-zero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)CrossRef ADS
    6.Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)CrossRef ADS
    7.Scarani, V., Gisin, N.: Quantum communication between N partners and Bell’s inequalities. Phys. Rev. Lett. 87, 117901 (2001)CrossRef ADS
    8.Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)CrossRef ADS MathSciNet MATH
    9.Acín, A., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)CrossRef ADS
    10.Brukner, Č., Żukowski, M., Pan, J.W., Zeilinger, A.: Bell’s inequalities and quantum communication complexity. Phys. Rev. Lett. 92, 127901 (2004)CrossRef ADS MathSciNet
    11.Pironio, S., et al.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010)CrossRef ADS
    12.Chuan, T.K., Maillard, J., Modi, K., Paterek, T., Paternostro, M., Piani, M.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012)CrossRef ADS
    13.Streltsov, A., Kampermann, H., Bru\(\beta \) , D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)
    14.Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)CrossRef ADS
    15.Cavalcanti, D., Aolita, L., Boixo, S., Modi, K., Piani, M., Winter, A.: Operational interpretations of quantum discord. Phys. Rev. A 83, 032324 (2011)CrossRef ADS
    16.Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)CrossRef ADS MATH
    17.Schröinger, E.: Discussion of probability relations between separated systems (II). Proc. Cambr. Philos. Soc. 31, 553 (1935)
    18.Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)CrossRef ADS
    19.Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)CrossRef ADS
    20.Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)CrossRef ADS
    21.Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)CrossRef ADS
    22.Hu, X., Fan, H., Zhou, D.L., Liu, W.M.: Quantum correlating power of local quantum channels. ibid 87, 032340 (2013)ADS
    23.Pan, J.W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417 (2003)CrossRef ADS
    24.Kwiat, P.G., Lopez, S.B., Stefanov, A., Gisin, N.: Experimental entanglement distillation and ’hidden’ non-locality. Nature 409, 1014 (2001)CrossRef ADS
    25.Dong, R., Lassen, M., Heersink, J., Marquardt, C., Filip, R., Leuchs, G., Andersen, U.L.: Experimental entanglement distillation of mesoscopic quantum states. Nat. Phys. 4, 919 (2008)CrossRef
    26.Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)CrossRef ADS
    27.Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498 (2000)CrossRef ADS
    28.West, J.R., Lidar, D.A., Fong, B.H., Gyure, M.F.: High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett. 105, 230503 (2010)CrossRef ADS
    29.Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1999)CrossRef ADS MathSciNet MATH
    30.Koashi, M., Ueda, M.: Reversing measurement and probabilistic quantum error correction. Phys. Rev. Lett. 82, 2598 (1999)CrossRef ADS
    31.Katz, N., Ansmann, M., Bialczak, R.C., Lucero, E., McDermott, R., Neeley, M., Steffen, M., Weig, E.M., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498 (2006)CrossRef ADS
    32.Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)CrossRef ADS
    33.Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)CrossRef ADS
    34.Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978 (2009)CrossRef ADS
    35.Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)CrossRef ADS
    36.Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)CrossRef ADS
    37.Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)CrossRef
    38.Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed \(\text{ spin }-\frac{1}{2}\) states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995)CrossRef ADS MathSciNet MATH
    39.Horodecki, R.: \(\text{ Two }-\text{ spin }-\frac{1}{2}\) mixtures and Bell’s inequalities. ibid 210, 223 (1996)ADS MathSciNet MATH
    40.Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)CrossRef ADS
    41.Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)CrossRef ADS
    42.Nakano, T., Piani, M., Adesso, G.: Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013)CrossRef ADS
    43.Weisskopf, V., Wigner, E.: Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheori. Z. Phys. 63, 54 (1930)CrossRef ADS MATH
    44.Li, Y.-L., Xiao, X.: Recovering quantum correlations from amplitude damping decoherence by weak measurement reversal. Quantum Inf. Process. 12, 3067 (2011)CrossRef ADS MathSciNet
  • 作者单位:Chunfang Sun (1) (2)
    Zhihua Chen (2) (3)
    Gangcheng Wang (1)
    Chunfeng Wu (4)
    Kang Xue (1)
    Leong Chuan Kwek (2) (5) (6)

    1. School of Physics, Northeast Normal University, Changchun, 130024, China
    2. Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore
    3. Department of Science, Zhijiang College, Zhejiang University of Technology, Hangzhou, 310024, China
    4. Pillar of Engineering Product Development, Singapore University of Technology and Design, 20 Dover Drive, Singapore, 138682, Singapore
    5. Institute of Advanced Studies, Nanyang Technological University, 60 Nanyang View, Singapore, 639673, Singapore
    6. National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
The protection of different quantum correlations, such as Bell nonlocality, quantum discord, and geometric quantum discord as trace distance against noise, is explored. By weak measurement and quantum measurement reversal, we show that the mentioned quantum correlations can be effectively preserved probabilistically from the decoherence due to amplitude damping. The results will play an important role in the experiments using the quantum correlations as resource. Keywords Decoherence Bell nonlocality Quantum discord

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700