Reconstructed Terrestrial Water Storage Change (ΔTWS) from 1948 to 2012 over the Amazon Basin with the Latest GRACE and GLDAS Products
详细信息    查看全文
  • 作者:Ning Nie ; Wanchang Zhang ; Zhijie Zhang ; Huadong Guo…
  • 关键词:Terrestrial water storage change ; Amazon Basin ; GRACE ; GLDAS ; El Niño ; Southern Oscillation
  • 刊名:Water Resources Management
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:30
  • 期:1
  • 页码:279-294
  • 全文大小:4,370 KB
  • 参考文献:Alsdorf D, Han SC, Bates P, Melack J (2010) Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sens Environ 114:2448–2456. doi:10.​1016/​j.​rse.​2010.​05.​020 CrossRef
    Arnesen AS, Silva TSF, Hess LL, Novo EMLM, Rudorff CM, Chapman BD, McDonald KC (2013) Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images. Remote Sens Environ 130:51–61. doi:10.​1016/​j.​rse.​2012.​10.​035 CrossRef
    Bazrafshan J, Nadi M, Ghorbani K (2015) Comparison of empirical copula-based joint deficit index (JDI) and multivariate standardized precipitation index (MSPI) for drought monitoring in Iran. Water Resour Manag 29:2027–2044. doi:10.​1007/​s11269-015-0926-x CrossRef
    Becker M, Meyssignac B, Xavier L, Cazenave A, Alkama R, Decharme B (2011) Past terrestrial water storage (1980–2008) in the Amazon Basin reconstructed from GRACE and in situ river gauging data. Hydrol Earth Syst Sci 15:533–546. doi:10.​5194/​hess-15-533-2011 CrossRef
    Bettadpur S, the CSR Level-2 Team (2012a) Assessment of GRACE mission performance and the RL05 gravity fields. Paper presented at the AGU Fall Meeting, San Francisco, USA, Dec 2012
    Bettadpur S, the CSR Level-2 Team (2012b) Insights into the Earth System mass variability from CSR-RL05 GRACE gravity fields. Paper presented at the EGU General Assembly 2012 Vienna, Austria, April 2012
    Chen Y, Schaffrin B, Shum CK (2008) Continental water storage changes from GRACE line-of-sight range acceleration measurements. In: Xu P, Liu J, Dermanis A (eds) Vi Hotine-Marussi symposium on theoretical and computational geodesy, vol 132. International Association of Geodesy Symposia. Springer, New York, pp 62–66. doi:10.​1007/​978-3-540-74584-6_​10
    Chen JL, Wilson CR, Tapley BD (2010) The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resour Res 46:W12526. doi:10.​1029/​2010wr009383
    Chinnasamy P, Agoramoorthy G (2015) Groundwater storage and depletion trends in Tamil Nadu state, India. Water Resour Manag 29:2139–2152. doi:10.​1007/​s11269-015-0932-z CrossRef
    Costa SMA, De Matos A, Blitzkow D (2012) Validation of the land water storage from gravity recovery and climate experiment (GRACE) with gauge data in the Amazon Basin. Bol Cienc Geod 18:262–281CrossRef
    Crowley JW, Mitrovica JX, Bailey RC, Tamisiea ME, Davis JL (2008) Annual variations in water storage and precipitation in the Amazon Basin. J Geod 82:9–13. doi:10.​1007/​s00190-007-0153-1 CrossRef
    Dai A, Qian TT, Trenberth KE, Milliman JD (2009) Changes in continental freshwater discharge from 1948 to 2004. J Clim 22:2773–2792. doi:10.​1175/​2008jcli2592.​1 CrossRef
    de Linage C, Kim H, Famiglietti JS, Yu JY (2013) Impact of Pacific and Atlantic sea surface temperatures on interannual and decadal variations of GRACE land water storage in tropical South America. J Geophys Res-Atmos 118:10811–10829. doi:10.​1002/​Jgrd.​50820 CrossRef
    Doll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134. doi:10.​1016/​S0022-1694(02)00283-4 CrossRef
    Frappart F, Ramillien G, Ronchail J (2013) Changes in terrestrial water storage versus rainfall and discharges in the Amazon Basin. Int J Climatol 33:3029–3046. doi:10.​1002/​joc.​3647 CrossRef
    GRDC (2007) Major river basins of the world/global runoff data center. Federal Institute of Hydrology, Koblenz
    Hall AC, Schumann GJP, Bamber JL, Bates PD (2011) Tracking water level changes of the Amazon Basin with space-borne remote sensing and integration with large scale hydrodynamic modelling: a review. Phys Chem Earth 36:223–231. doi:10.​1016/​j.​pce.​2010.​12.​010 CrossRef
    Johnston R, Smakhtin V (2014) Hydrological modeling of large river basins: how much is enough? Water Resour Manag 28:2695–2730. doi:10.​1007/​s11269-014-0637-8 CrossRef
    Kaplan A, Kushnir Y, Cane MA (2000) Reduced space optimal interpolation of historical marine sea level pressure: 1854–1992. J Clim 13:2987–3002. doi:10.​1175/​1520-0442(2000)013<2987:​RSOIOH>2.​0.​CO;2 CrossRef
    Liu JG, Yang H (2010) Spatially explicit assessment of global consumptive water uses in cropland: green and blue water. J Hydrol 384:187–197. doi:10.​1016/​j.​jhydro1.​2009.​11.​024 CrossRef
    Liu JG, Zehnder AJB, Yang H (2009) Global consumptive water use for crop production: the importance of green water and virtual water. Water Resour Res 45:W05428. doi:10.​1029/​2007wr006051
    Milly PCD, Shmakin AB (2002) Global modeling of land water and energy balances. Part I: the land dynamics (LaD) model. J Hydrometeorol 3:283–299. doi:10.​1175/​1525-7541(2002)003<0283:​GMOLWA>2.​0.​CO;2 CrossRef
    Molinier M, Ronchail J, Guyot JL, Cochonneau G, Guimaraes V, de Oliveira E (2009) Hydrological variability in the amazon drainage basin and African tropical basins. Hydrol Process 23:3245–3252. doi:10.​1002/​Hyp.​7400 CrossRef
    Perez-Martin MA, Estrela T, Andreu J, Ferrer J (2014) Modeling water resources and river-aquifer interaction in the Jucar River Basin, Spain. Water Resour Manag 28:4337–4358. doi:10.​1007/​s11269-014-0755-3 CrossRef
    Rabatel A et al. (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102. doi:10.​5194/​tc-7-81-2013 CrossRef
    Rodell M et al. (2004) The global land data assimilation system. Bull Am Meteorol Soc 85:381–394. doi:10.​1175/​Bams-85-3-381 CrossRef
    Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–U980. doi:10.​1038/​Nature08238 CrossRef
    Rui H (2011) Readme document for Global Land Data Assimilation System Version 1(GLDAS-1) Products.
    Rui H (2012) Readme document for Global Land Data Assimilation System Version 2 (GLDAS-2) Products.
    Seyler F, Calmant S, Da Silva J, Filizola N, Cochonneau G, Bonnet MP, Costi ACZ (2009) Inundation risk in large tropical basins and potential survey from radar altimetry: example in the Amazon Basin. Mar Geod 32:303–319. doi:10.​1080/​0149041090309480​9 CrossRef
    Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.​1029/​2005GL025285
    Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res 44:W02433. doi:10.​1029/​2006WR005779
    Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305:503–505. doi:10.​1126/​science.​1099192 CrossRef
    Trambauer P, Maskey S, Winsemius H, Werner M, Uhlenbrook S (2013) A review of continental scale hydrological models and their suitability for drought forecasting in (sub-Saharan) Africa. Phys Chem Earth 66:16–26. doi:10.​1016/​j.​pce.​2013.​07.​003 CrossRef
    Vergni L, Todisco F, Mannocchi F (2015) Analysis of agricultural drought characteristics through a two-dimensional copula. Water Resour Manag 29:2819–2835. doi:10.​1007/​s11269-015-0972-4 CrossRef
    Voss KA, Famiglietti JS, Lo MH, de Linage C, Rodell M, Swenson SC (2013) Groundwater depletion in the middle east from GRACE with implications for transboundary water management in the Tigris-Euphrates-western Iran region. Water Resour Res 49:904–914. doi:10.​1002/​wrcr.​20078 CrossRef
    Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31:L11501. doi:10.​1029/​2004gl019779 CrossRef
    Xavier L, Becker M, Cazenave A, Longuevergne L, Llovel W, Rotunno Filho OC (2010) Interannual variability in water storage over 2003–2008 in the Amazon Basin from GRACE space gravimetry, in situ river level and precipitation data. Remote Sens Environ 114:1629–1637. doi:10.​1016/​j.​rse.​2010.​02.​005 CrossRef
    Yang T, Wang C, Yu ZB, Xu F (2013) Characterization of spatio-temporal patterns for various GRACE- and GLDAS-born estimates for changes of global terrestrial water storage. Glob Planet Chang 109:30–37. doi:10.​1016/​j.​gloplacha.​2013.​07.​005 CrossRef
    Zeng N, Yoon J-H, Mariotti A, Swenson S (2008) Variability of basin-scale terrestrial water storage from a PER water budget method: the Amazon and the Mississippi. J Clim 21:248–265. doi:10.​1175/​2007jcli1639.​1 CrossRef
    Zeng Z, Piao S, Lin X, Yin G, Peng S, Ciais P, Myneni RB (2012) Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models. Environ Res Lett 7:1–7. doi:10.​1088/​1748-9326/​7/​1/​014026
  • 作者单位:Ning Nie (1) (2)
    Wanchang Zhang (2)
    Zhijie Zhang (3)
    Huadong Guo (2)
    Natarajan Ishwaran (4)

    1. State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
    2. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, 100094, China
    3. College of Automation, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
    4. International Centre on Space Technologies for National and Cultural Heritage under the Auspices of UNESCO, Chinese Academy of Sciences and UNESCO, Beijing, 100094, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Geotechnical Engineering
    Meteorology and Climatology
    Civil Engineering
    Environment
  • 出版者:Springer Netherlands
  • ISSN:1573-1650
文摘
Terrestrial water storage (TWS) is a very important component governing global changes. TWS change (ΔTWS) can only be estimated by hydrological modeling before 2002 when the Gravity Recovery and Climate Experiment (GRACE) space mission provided a highly valuable data set that allows studying of ΔTWS over large river basins worldwide since then. The lifetime of GRACE, however, is still too short to meet the needs for studying long term variability of ΔTWS during the past decades. In this paper, we reconstructed monthly and annual ΔTWS time series over the Amazon Basin in the past 65 years by use of GRACE-based TWS anomaly (TWSA) data and the Global Land Data Assimilation System (GLDAS) products. The rationality of the reconstructed annual ΔTWS time series was indirectly evaluated by examining the historic coherence between ΔTWS and El Niño-Southern Oscillation under conditions of poor availability of in situ observation data and lack of reference work published in Amazon Basin. These datasets offer a unique opportunity for understanding the varying characteristics of ΔTWS in the Amazon during the past 65 years. Besides improving our knowledge of long-term water resource variations in this large river basin, these reconstructed datasets not only contribute to droughts monitoring, but also provide a new perspective for understanding water resource variations in other big river basins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700