A Versatile Method for Uniform Dispersion of Nanocarbons in Metal Matrix Based on Electrostatic Interactions
详细信息    查看全文
  • 作者:Zan Li ; Genlian Fan ; Zhanqiu Tan ; Zhiqiang Li ; Qiang Guo
  • 关键词:Metal matrix composites ; Uniform dispersion ; Carbon nanotube ; Graphene Electrostatic interactions
  • 刊名:Nano-Micro Letters
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:8
  • 期:1
  • 页码:54-60
  • 全文大小:1,422 KB
  • 参考文献:1.A. Mortensen, J. Llorca, Metal matrix composites. Annu. Rev. Mater. Res. 40, 243–270 (2010). doi:10.​1146/​annurev-matsci-070909-104511 CrossRef
    2.M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996). doi:10.​1038/​381678a0 CrossRef
    3.C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(18), 385–388 (2008). doi:10.​1126/​science.​1157996 CrossRef
    4.S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006). doi:10.​1038/​nature04969 CrossRef
    5.A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). doi:10.​1038/​nmat1849 CrossRef
    6.Q. Zhang, J.Q. Huang, W.Z. Qian, Y.Y. Zhang, F. Wei, The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9(8), 1237–1265 (2013). doi:10.​1002/​smll.​201203252 CrossRef
    7.L.L. Cao, Z.Q. Li, G.L. Fan, L. Jiang, D. Zhang, W.J. Moon, The growth of carbon nanotubes in aluminum powders by the catalytic pyrolysis of polyethylene glycol. Carbon 50(3), 1057–1062 (2012). doi:10.​1016/​j.​carbon.​2011.​10.​011 CrossRef
    8.S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, S.H. Hong, Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater. 17(11), 1377–1381 (2005). doi:10.​1002/​adma.​200401933 CrossRef
    9.Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon, S.M. Han, Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat. Commun. 4, 2114 (2013). doi:10.​1038/​ncomms3114
    10.L. Jiang, Z.Q. Li, G.L. Fan, L.L. Cao, D. Zhang, The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50(5), 1993–1998 (2012). doi:10.​1016/​j.​carbon.​2011.​12.​057 CrossRef
    11.A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder. Compos. Part A: Appl. Sci. Manuf. 38(2), 646–650 (2007). doi:10.​1016/​j.​compositesa.​2006.​04.​006 CrossRef
    12.C.F. Deng, D.Z. Wang, X.X. Zhang, A.B. Li, Processing and properties of carbon nanotubes reinforced aluminum composites. Mater. Sci. Eng. A 444(1–2), 138–145 (2007). doi:10.​1016/​j.​msea.​2006.​08.​057 CrossRef
    13.Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50(5), 1843–1852 (2012). doi:10.​1016/​j.​carbon.​2011.​12.​034 CrossRef
    14.Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, Z.Y. Ma, Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Compos. Part A: Appl. Sci. Manuf. 43(12), 2161–2168 (2012). doi:10.​1016/​j.​compositesa.​2012.​07.​026 CrossRef
    15.R. Zhong, H.T. Cong, P.X. Hou, Fabrication of nano-Al based composites reinforced by single-walled carbon. Carbon 41(4), 848–851 (2003). doi:10.​1016/​S0008-6223(02)00427-X CrossRef
    16.R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Strengthening in carbon nanotube/aluminum (CNT/Al) composites. Scr. Mater. 53(10), 1159–1163 (2005). doi:10.​1016/​j.​scriptamat.​2005.​07.​022 CrossRef
    17.Z. Li, G.L. Fan, Z.Q. Tan, Q. Guo, D.B. Xiong, Y.S. Su, Z.Q. Li, D. Zhang, Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites. Nanotechnology 25, 325601 (2014). doi:10.​1088/​0957-4484/​25/​32/​325601 CrossRef
    18.E.E. Tkalya, M. Ghislandi, G. De With, C.E. Koning, The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Curr. Opin. Colloid Interface Sci. 17(4), 225–232 (2012). doi:10.​1016/​j.​cocis.​2012.​03.​001 CrossRef
    19.J.Y. Oh, S.J. Yang, J.Y. Park, T. Kim, K. Lee, Y.S. Kim, H.N. Han, C.R. Park, Easy preparation of self-assembled high-density buckypaper with enhanced mechanical properties. Nano Lett. 15(1), 190–197 (2014). doi:10.​1021/​nl5033588 CrossRef
    20.M.K. Shin, B. Lee, S.H. Kim, J.A. Lee, G.M. Spinks, S. Gambhir, G.G. Wallace, M.E. Kozlov, R.H. Baughman, S.J. Kim, Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat. Commun. 3, 650 (2012). doi:10.​1038/​ncomms1661 CrossRef
    21.Z. Li, G.L. Fan, Q. Guo, Z.Q. Li, Y.S. Su, D. Zhang, Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites. Carbon 95, 419–427 (2015). doi:10.​1016/​j.​carbon.​2015.​08.​014 CrossRef
  • 作者单位:Zan Li (1)
    Genlian Fan (1)
    Zhanqiu Tan (1)
    Zhiqiang Li (1)
    Qiang Guo (1)
    Dingbang Xiong (1)
    Di Zhang (1)

    1. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
  • 刊物类别:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 刊物主题:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2150-5551
文摘
Realizing the uniform dispersion of nanocarbons such as carbon nanotube and graphene in metals, is an essential prerequisite to fully exhibit their enhancement effect in mechanical, thermal, and electrical properties of metal matrix composites (MMCs). In this work, we propose an effective method to achieve uniform distribution of nanocarbons in various metal flakes through a slurry-based method. It relies on the electrostatic interactions between the negatively charged nanocarbons and the positively charged metal flakes when mixed in slurry. For case study, flake metal powders (Al, Mg, Ti, Fe, and Cu) were positively charged in aqueous suspension by spontaneous ionization or cationic surface modification. While nanocarbons, given examples as carboxylic multi-walled carbon nanotubes, pristine single-walled carbon nanotube, and carbon nanotube–graphene oxide hybrid were negatively charged by the ionization of oxygen-containing functional groups or anionic surfactant. It was found that through the electrostatic interaction mechanism, all kinds of nanocarbons can be spontaneously and efficiently adsorbed onto the surface of various metal flakes. The development of such a versatile method would provide us great opportunities to fabricate advanced MMCs with appealing properties. Keywords Metal matrix composites Uniform dispersion Carbon nanotube Graphene Electrostatic interactions

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700