Dye-sensitized solar cells with 3D flower-like α-Fe2O3-decorated reduced graphenes oxide as photoanodes
详细信息    查看全文
  • 作者:Xin Shang ; Zhiqiang Guo ; Wei Gan ; Ru Zhou ; Cheng Ma ; Ke Hu ; Haihong Niu…
  • 关键词:Hematite ; Three ; dimensional hierarchical ; Reduced graphene oxide ; Photoanode ; Dye ; sensitized solar cells
  • 刊名:Ionics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:22
  • 期:3
  • 页码:435-443
  • 全文大小:1,854 KB
  • 参考文献:1.O’Regan B, Grätzel M (1991) Nature 353:737–740CrossRef
    2.Manoharan K, Joby NG, Venkatachalam P (2014) Ionics 20:886–897CrossRef
    3.Abdullah H, Ariyanto NP, Yuliarto B, Asshaari I, Omar A, Razali MZ (2015) Ionics 21:251–261CrossRef
    4.Uchiyama H, Yukizawa M, Kozuka H (2003) J Phys Chem C 115:7050–7055CrossRef
    5.Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) J Phys Chem B 107:597–606CrossRef
    6.Kang J, Kuang Q, Xie Z (2011) J Phys Chem C 115:7874–7879CrossRef
    7.Zhang Q, Cao G (2011) Nano Today 6:91–109CrossRef
    8.Yu J, Yu X, Huang B, Zhang X, Dai Y (2009) Cryst Growth Des 9:1474–1480CrossRef
    9.Agarwala S, Lim ZH, Nicholsonband E, Ho GW (2012) Nanoscale 4:194–205CrossRef
    10.Zhang LS, Jiang LY, Yan HJ, Wang WD, Wang W, Song WG, Guo YG, Wan LJ (2010) J Mater Chem 20:5462–5467CrossRef
    11.Zhang H, Lv X, Li Y, Wang Y, Li J (2010) ACS Nano 4:380–3862CrossRef
    12.Wang XR, Tabakman SM, Dai HJ (2008) J Am Chem Soc 130:8152–8153CrossRef
    13.Zhong LS, Hu JS, Cui ZM, Wan LJ, Song WG (2007) Chem Mater 199:4557–4562CrossRef
    14.Wang L, Fei T, Lou Z, Zhang T (2011) ACS Appl Mater Interfaces 3:4689–4694CrossRef
    15.Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339CrossRef
    16.Niu HH, Liu L, Wang H, Zhang S, Ma Q, Mao X, Wan L, Miao SD, Xu JZ (2012) Electrochim Acta 81:246–253CrossRef
    17.Hou Y, Zuo F, Dagg A, Feng PY (2012) Nano Lett 12:6464–6473CrossRef
    18.Xiong G, Shao R, Droubay TC, Joly AG, Beck KM, Chambers SA, Hess WP (2007) Adv Funct Mater 17:2133CrossRef
    19.Cahen D, Hodes G, Grtzel M, Guillemoles JF, Riess I (2000) J Phys Chem B 104:2053CrossRef
    20.Song JL, Yin ZY, Yang ZJ, Amaladass P, Wu SX, Ye J, Zhao Y, Deng WQ, Zhang H, Liu XW (2011) Chem Eur J 17:10832–10837CrossRef
    21.Liu ZH, Wang ZM, Yang X, Ooi K (2002) Langmuir 18:4926–4932CrossRef
    22.Abdelsayed V, Moussa S, Hassan HM, Aluri HS, Collinson MM, El-Shall MS (2010) J Phys Chem Lett 1:2804–2809CrossRef
    23.Park S, Ruoff RS (2009) Nat Nanotechnol 4:217–224CrossRef
    24.Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) J Mater Chem 16:155–158CrossRef
    25.Stankovich S, Dikin DA, Piner RD, Kohlhaas KM, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558–1565CrossRef
    26.Hassan HMA, Abdelsayed V, Khder AER, AbouZeid KM, Terner J, El-Shall MS, Al-Resayes SI, El-Azhary AA (2009) J Mater Chem 19:3832–3837CrossRef
    27.Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126–1130CrossRef
    28.Ferrari AC, Robertson J (2000) Phys Rev B 61:14095–14107CrossRef
    29.Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Nano Lett 8:36–41CrossRef
    30.Takuron NM, Yujiro K, Nroimichi K, Tsutomu M (2004) J Photochem Photobiol A Chem 164:187–191CrossRef
    31.Kronawitter CX, Zegkinoglou I, Rogero C, Guo JH, Mao SS, Himpsel FJ, Vayssieres L (2012) J Phys Chem C 116:22780CrossRef
    32.Song T, Song L (2010) Acta Chim Sin 68:1057
    33.Bai S, Chen S, Shen X, Zhu G, Wang G (2012) RSC Adv 2:10977–10984CrossRef
    34.Zhang K, Zhang L, Zhao XS, Wu J (2010) Chem Mater 22:1392–1401CrossRef
    35.Tian L, Zhuang Q, Li J, Wu C, Shi Y, Sun S (2012) Electrochim Acta 65:153–158CrossRef
    36.Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) ACS Nano 5:3333–3338CrossRef
    37.Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806–4814CrossRef
    38.Wang S, Wang L, Yang T, Liu X, Zhang J, Zhu B, Zhang S, Huang W, Wu S (2010) J Solid State Chem 183:2869–2876CrossRef
    39.Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401. doi:10.​1103/​PhysRevLett.​97.​187401
    40.Zou Y, Kan J, Wang Y (2011) J Phys Chem C 115:20747–20753CrossRef
    41.Niu HH, Zhang SW, Ma Q, Qin SX, Wan L, Xu JZ, Miao SD (2013) RSC Adv 3:17228CrossRef
    42.Tang YB, Lee CS, Xu J, Liu ZT, Chen ZH, He Z, Cao YL, Yuan G, Song H, Chen L, Luo L, Cheng HM, Zhang WJ, Bello I, Lee ST (2010) ACS Nano Appl 4:3482–3488CrossRef
  • 作者单位:Xin Shang (1)
    Zhiqiang Guo (1)
    Wei Gan (1)
    Ru Zhou (1)
    Cheng Ma (1)
    Ke Hu (1)
    Haihong Niu (1)
    Jinzhang Xu (1)

    1. School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, Anhui Province, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
For the first time, we report a one-step fabrication of an environment-friendly approach to synthesize flower-like α-Fe2O3 hierarchical nanoparticles (NPs)/reduced graphene oxide (RGO) hybrids by combining the graphene oxide (GO) with the growth of α-Fe2O3 NPs. The GO sheet which possesses the functional group, such as hydroxyl (–OH) and carbonyl groups (–OOH), can be easily incorporated with the petal of the flower-like α-Fe2O3 in ethanol and water solution through a solvothermal process, during which GO is reduced to RGO without the addition of any strong reducing agent or requiring any post-high-temperature annealing process. The as-prepared samples are loose and porous with flower-like structure, and the RGO hybrids were wrapped up uniformly on the sheet of α-Fe2O3 NPs. To demonstrate the potential applications, we have fabricated dye-sensitized solar cells (DSSCs) from the as-synthesized hierarchical flower-like α-Fe2O3/RGO and investigated it for the photoanode of DSSCs. Results show that the hierarchical α-Fe2O3/RGO solar cell exhibits improved performances in comparison with the free α-Fe2O3 NPs. The enhancement of photovoltaic properties is attributed to the unique porous nature and good conductivity which allow more efficient diffusion of I− ions and facilitate the transfer of electron in the network.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700