Genome-wide association-mapping for fruit quality traits in tomato
详细信息    查看全文
  • 作者:Jing Zhang ; Jiantao Zhao ; Yan Liang ; Zhirong Zou
  • 关键词:Tomato ; Fruit ; quality traits ; Association ; mapping ; Quantitative trait loci
  • 刊名:Euphytica
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:207
  • 期:2
  • 页码:439-451
  • 全文大小:955 KB
  • 参考文献:Ashrafi H, Kinkade MP, Merk HL, Foolad MR (2012) Identification of novel quantitative trait loci for increased lycopene content and other fruit quality traits in a tomato recombinant inbred line population. Mol Breed 30:549鈥?67CrossRef
    Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng DZ, Platt A, Tarone AM, Hu TT et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627鈥?31PubMedCentral CrossRef PubMed
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289鈥?00
    Berloo R, Zhu A, Ursem R, Verbakel H, Gort G, van Eeuwijk FA (2008) Diversity and linkage disequilibrium analysis within a selected set of cultivated tomatoes. Theor Appl Genet 117:89鈥?01PubMedCentral CrossRef PubMed
    Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649鈥?664CrossRef
    Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633鈥?635CrossRef PubMed
    Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323鈥?330CrossRef
    Causse M, Saliba-Colombani V, Lecomte L, Duffe P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089鈥?098CrossRef PubMed
    Causse M, Buret M, Robini K, Verschave P (2003) Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences. J Food Sci 68:2342鈥?350CrossRef
    Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671鈥?685CrossRef PubMed
    Chen FQ, Foolad MR, Hyman J, St. Clair DA, Beelaman RB (1999) Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum 脳 L. p impinellifolium cross and comparison of QTLs across tomato species. Mol Breed 5:283鈥?99CrossRef
    Chen YS (2013) Dissection of agronomic traits in crops by association mapping. In: L眉bberstedt T (ed) Diagnostics in plant breeding. Springer, Dordrecht, pp 119鈥?42CrossRef
    Ersoz ES, Yu J, Buckler ES (2007) Application of linkage mapping in crop plants. Genomics Approaches Platforms 1:97鈥?19
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611鈥?620CrossRef PubMed
    Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357鈥?74CrossRef PubMed
    Food and Agriculture Organization of the United Nations (2015) Statistical pocketbook world food and agriculture
    Fulton TM, Chunwingse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:07鈥?09CrossRef
    Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881鈥?94CrossRef
    Frary A, Nesbitt TC, Grandillo S, van der Knaap E, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85鈥?8CrossRef PubMed
    Frusciante L, Carli P, Ercolano MR, Pernice R, Di Matteo A, Fogliano V, Pellegrini N (2007) Antioxidant nutritional quality of tomato. Mol Nutr Food Res 51:609鈥?17CrossRef PubMed
    Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978鈥?87CrossRef
    Grandillo S, Tanksley SD (1996) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. e sculentum and L. p impinellifolium. Theor Appl Genet 92:957鈥?65CrossRef PubMed
    Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461鈥?85CrossRef PubMed
    Goldman IL, Paran I, Zamir D (1995) Quantitative trait locus analysis of a recombinant inbred line population derived from a Lycopersicon esculentum 脳 Lycopersicon cheesmanii cross. Theor Appl Genet 90:925鈥?32CrossRef PubMed
    Hall D, Tegstrom C, Ingvarsson PK (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Brief Funct Genomics 9:157鈥?65CrossRef PubMed
    Hatzig SV, Frisch M, Breuer F, Nesi N, Ducournau S, Wagner M, Leckband G, Abbadi A, Snowdon RJ (2015) Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front Plant Sci 6
    Kot铆kov谩 Z, Lachman J, Hejtm谩nkov谩 A, Hejtm谩nkov谩 K (2011) Determination of antioxidant activity and antioxidant content in tomato varieties and evaluation of mutual interactions between antioxidants. LWT Food Sci Technol 44:1703鈥?710CrossRef
    Kumar S, Rowan D, Hunt M, Chagn茅 D, Whitworth C, Souleyre E (2015) Genome-wide scans reveal genetic architecture of apple flavour volatiles. Mol Breed 35
    Matsuda F, Nakabayashi R, Yang Z, Okazaki Y, Yonemaru J, Ebana K, Yano M, Saito K (2015) Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism. Plant J 81:13鈥?3PubMedCentral CrossRef PubMed
    Mazzucato A, Papa R, Bitocchi E, Mosconi P, Nanni L, Negri V, Picarella ME, Siligato F, Soressi GP, Tiranti B, Veronesi F (2008) Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet 116:57鈥?69CrossRef
    Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437鈥?48PubMed
    Mu帽os S, Ranc N, Botton E, Berard A, Roll S, Duffe P, Carretero Y, LePaslier MC, Delalande C, Bouzayen M, Brunel D, Causse M (2011) Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near Wuschel. Plant Physiol 156:2244鈥?254PubMedCentral CrossRef PubMed
    Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365鈥?79PubMedCentral PubMed
    Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato-comparison across species, generations, and environments. Genetics 127:181鈥?97PubMedCentral PubMed
    Pers TH, Karjalainen JM, Chan Y, Westra H, Wood AR, Yang J, Lui JC, Vedantam S, Gustafsson S, Esko T, Frayling T, Speliotes EK, Boehnke M, Raychaudhuri S, Fehrmann RSN, Hirschhorn JN, Franke L (2015) Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun 6:5890PubMedCentral CrossRef PubMed
    Platt A, Vilhjalmsson BJ, Nordborg M (2010) Conditions under which genome-wide association studies will be positively misleading. Genetics 186:1045鈥?052PubMedCentral CrossRef PubMed
    Price AH (2006) Believe it or not, QTLs are accurate!. Trends Plant Sci 11:213鈥?16CrossRef PubMed
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945鈥?59PubMedCentral PubMed
    Ranc N, Munos S, Santoni S, Causse M (2008) A clarified position for Solanum lycopersicum var. c erasiforme in the evolutionary history of tomatoes (Solanaceae). BMC Plant Biol 8:130PubMedCentral CrossRef PubMed
    Ranc N, Munos S, Xu J, Le Paslier MC, Chauveau A, Bounon R, Rolland S, Bouchet JP, Brunel D, Causse M (2012) Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3 (Bethesda) 2:853鈥?64CrossRef
    Rick CM (1976) Tomato, Lycopersicon e sculentum (Solanaceae). In: Simmonds NW (ed) Evolution of crop plants. Longman Group, London, pp 268鈥?73
    Ruggieri V, Francese G, Sacco A, Alessandro A, Rigano MM, Parisi M, Milone M, Cardi T, Mennella G, Barone A (2014) An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol 14:337PubMedCentral CrossRef PubMed
    Saidou AA, Thuillet AC, Couderc M, Mariac C, Vigouroux Y (2014) Association studies including genotype by environment interactions: prospects and limits. BMC Genet 15:3PubMedCentral CrossRef PubMed
    Saliba-Colombani V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:259鈥?72CrossRef
    Sun YD, Liang Y, Wu JM, Li YZ, Cui X, Qin L (2012) Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum 脳 S. pimpinellifolium cross. Genet Mol Res 11:3696鈥?710CrossRef PubMed
    Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien M (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819鈥?31CrossRef PubMed
    Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) 0 Advanced backcross QTL analysis in a cross between an elite processing. Theor Appl Genet 92:213鈥?24CrossRef PubMed
    Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in Xowering time. Nat Genet 28:286鈥?89CrossRef PubMed
    Wen Z, Tan R, Yuan J, Bales C, Du W, Zhang S, Chilvers MI, Schmidt C, Song Q, Cregan PB, Wang D (2014) Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics 15:809PubMedCentral CrossRef PubMed
    Xu J, Ranc N, Mu帽os S, Rolland S, Bouchet J, Desplat N, Le Paslier M, Liang Y, Brunel D, Causse M (2013) Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species. Theor Appl Genet 126:567鈥?81CrossRef PubMed
    Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2005) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203鈥?08CrossRef PubMed
    Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4PubMedCentral CrossRef PubMed
  • 作者单位:Jing Zhang (1) (2)
    Jiantao Zhao (1) (2)
    Yan Liang (1)
    Zhirong Zou (1) (2)

    1. College of Horticulture, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
    2. Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
    Plant Sciences
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5060
文摘
A diverse collection of 174 tomato plants was selected, including 123 accessions of cherry tomato (So lanum lycopersicum var. cerasiforme) and 51 accessions of heirloom cultivars (So lanum lycopersicum). Association-mapping for fruit nutritional and quality traits was conducted with 182 SSR using the mixed linear models. A total of 111 marker-trait associations (MTAs) (P < 0.005) were detected for ten measured traits. Most association loci were detected for fruit equatorial diameter, ascorbic acid and fruit weight, with 22, 22, 17 marker-trait associations, respectively. Co-localised quantitative trait loci (QTLs) and significant associations are compared, such as fw2.2, fw11.1, ED2a, brx2.1, PD3a, and PD9a, which validate this study. Moreover, we also compared previous genome-wide association studies and confirmed certain identified MTAs (e.g. CON30D-472, Z1707-10D) or genes, such as Solyc11g071840.1.1. Our results confirm some QTLs and highlight some new candidate chromosome regions with potential for further tomato fruit quality breeding. Keywords Tomato Fruit-quality traits Association-mapping Quantitative trait loci

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700