x Cl x (x?=?0.005, 0.01, 0.03, 0.05) samples were fabricated by solid state reaction followed with spark plasma sintering, and the relative densities of the sintered samples were higher than 98%. Thermoelectric properties, including Seebeck coefficient (α), electrical conductivity (σ). and thermal conductivity (κ), were measured in the temperature range of 300-00?K. The increase of Cl content (x) caused an increase of σ, and the maximum ZT value of 0.2 was obtained at about 630?K for the CdTe0.97Cl0.03 sample." />
Thermoelectric Properties of CdTe1?em class="a-plus-plus">x Cl x Material Prepared by Spark Plasma Sintering Method
详细信息    查看全文
  • 作者:Menglei Wu (1) (2)
    Yukun Xiao (1)
    Zhengping Fu (2)
    Zhixiang Li (1)
    Jingtao Xu (1)
    Jun Jiang (1)
    Haochuan Jiang (1)
    Gaojie Xu (1)
  • 关键词:CdTe ; thermoelectric properties ; spark plasma sintering
  • 刊名:Journal of Electronic Materials
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:43
  • 期:9
  • 页码:3087-3091
  • 全文大小:1,281 KB
  • 参考文献:1. G.J. Snyder and E.S. Toberer, / Nat. Mater. 7, 105 (2008). CrossRef
    2. Y.Z. Pei, H. Wang, and G.J. Snyder, / Adv. Mater. 24, 6125 (2012). CrossRef
    3. Y.Q. Cao, T.J. Zhu, X.B. Zhao, X.B. Zhang, and J.P. Tu, / Appl. Phys. A 92, 321 (2008). CrossRef
    4. K. Ahn, C.P. Li, C. Uher, and M.G. Kanatzidis, / Chem. Mater. 21, 1361 (2009). CrossRef
    5. Y.Z. Pei, A.D. Lalonde, N.A. Heinz, and G.J. Snyder, / Adv. Energy Mater. 2, 670 (2012). CrossRef
    6. J.M.O. Zide, J.H. Bahk, R. Singh, M. Zebarjadi, G. Zeng, H. Lu, J.P. Feser, D. Xu, S.L. Singer, Z.X. Bian, A. Majumdar, J.E. Bowers, A. Shakouri, and A.C. Gossard, / J. App. Phys. 108, 123702 (2010). CrossRef
    7. M. Szot, K. Dybko, P. Dziawa, L. Kowalczyk, E. Smajek, V. Domukhovski, B. Taliashvili, P. Dluzewski, A. Reszka, B.J. Kowalski, M. Wiater, T. Wojtowicz, and T. Story, / Cryst. Growth Des. 11, 4794 (2011). CrossRef
    8. F.R. Yu, J.J. Zhang, D.L. Yu, J.L. He, and Z.Y. Liu, et al., / J. Appl. Phys. 105, 064303 (2009). CrossRef
    9. H.Y. Shin and C.Y. Sun, / J. Cryst. Growth 186, 354 (1998). CrossRef
    10. B. Yang, Y. Ishikawa, T. Miki, Y. Doumae, T. Tomizono, and M. Issiki, / J. Cryst. Growth 159, 171 (1996). CrossRef
    11. U. Pal, P. Fernández, and J. Piqueras, / Mater. Lett. 23, 227 (1995). CrossRef
    12. B. Segall, M.R. Lorenz, and R.E. Halsted, / Phys. Rev. 129, 2471 (1963). CrossRef
    13. K. Murase, H. Watanabe, S. Mori, T. Hirato, and Y. Awakura, / J. Electrochem. Soc. 146, 4477 (1999). CrossRef
    14. O.A. Matveev, A.I. Terent’ev, N.K. Zelenina, V.N. Gus’kov, V.E. Sedov, A.A. Tomasov, and V.P. Karpenko, / Semiconductors 39, 998 (2005). CrossRef
    15. L. Chibani, M. Hage-Ali, and P. Siffert, / J. Cryst. Growth 161, 153 (1996). CrossRef
    16. J.T. Mullinsa, B.J. Cantwella, A. Basua, Q. Jiangb, A. Choubeyb, and A.W. Brinkmanb, / J. Cryst. Growth 310, 2058 (2008). CrossRef
    17. B.A. Paez, / Phys. Stat. Sol. 220, 221 (2000). CrossRef
    18. M.A. Islam, M.S. Hossain, M.M. Aliyu, M.R. Karim, T. Razykov, K. Sopian, and N. Amin, / Thin Solid Films 546, 367 (2013). CrossRef
    19. S. Cho, A. DiVenere, G.K. Wong, J.B. Kettersona, J.R. Meyer, and C.A. Hoffman, / Solid State Commun. 102, 673 (1997). CrossRef
    20. Z. Cui, J. Sun, C. Wang, C. Li, and N. Gu, / Appl. Phys. A 107, 455 (2012). CrossRef
    21. H. Elhadidy, J. Franc, E. Belas, P. Hlídek, P. Moravec, R. Grill, and P. Hoschl, / J. Electron. Mater. 37, 1219 (2008). CrossRef
    22. K. Ahn, M.K. Han, Jq He, J. Androulakis, S. Ballikaya, C. Uher, V.P. Dravid, and M.G. Kanatzidis, / J. Am. Chem. Soc. 132, 5227 (2010). CrossRef
    23. J. Jiang, L.D. Chen, Q. Yao, S.Q. Bai, and Q. Wang, / Mater. Chem. Phys. 92, 39 (2005). CrossRef
    24. D. Perrin, M. Chitroub, S. Scherrer, and H. Scherrer, / J. Phys. Chem. Solids 61, 1687 (2000). CrossRef
    25. J.Q. He, M.G. Kanatzidis, and V.P. Dravid, / Mater. Today 16, 166 (2013). CrossRef
    26. G.S. Kumar and G. Prasad, / J. Mater. Sci. 28, 4261 (1993). CrossRef
  • 作者单位:Menglei Wu (1) (2)
    Yukun Xiao (1)
    Zhengping Fu (2)
    Zhixiang Li (1)
    Jingtao Xu (1)
    Jun Jiang (1)
    Haochuan Jiang (1)
    Gaojie Xu (1)

    1. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
    2. Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
  • ISSN:1543-186X
文摘
CdTe compound is a prospective thermoelectric material due to its high Seebeck coefficient and low thermal conductivity. In the present study, we optimized its carrier concentration by substituting Cl on the Te site in order to improve the electrical conductivity and decrease the lattice thermal conductivity. The polycrystalline CdTe1?em class="a-plus-plus">x Cl x (x?=?0.005, 0.01, 0.03, 0.05) samples were fabricated by solid state reaction followed with spark plasma sintering, and the relative densities of the sintered samples were higher than 98%. Thermoelectric properties, including Seebeck coefficient (α), electrical conductivity (σ). and thermal conductivity (κ), were measured in the temperature range of 300-00?K. The increase of Cl content (x) caused an increase of σ, and the maximum ZT value of 0.2 was obtained at about 630?K for the CdTe0.97Cl0.03 sample.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700