Improved Corrosion Resistance of As-Extruded GZ51K Biomagnesium Alloy with High Mechanical Properties by Aging Treatment
详细信息    查看全文
  • 作者:Xiaobo Zhang ; Qian Wang ; Zhixin Ba…
  • 关键词:aging treatment ; biomaterial ; corrosion ; LPSO ; magnesium alloy ; mechanical property
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:25
  • 期:3
  • 页码:719-725
  • 全文大小:1,641 KB
  • 参考文献:1.Y.F. Zheng, X.N. Gu, and F. Witte, Biodegradable Metals, Mater. Sci. Eng. R, 2014, 77, p 1–34CrossRef
    2.Z.H. Wang, N. Li, R. Li, Y.W. Li, and L.Q. Ruan, Biodegradable Intestinal Stents: A Review, Prog. Nat. Mater. Int., 2014, 24, p 423–432CrossRef
    3.N.T. Kirkland, Magnesium Biomaterials: Past, Present and Future, Corros. Eng. Sci. Technol., 2012, 47, p 322–328CrossRef
    4.Y.J. Chen, Z.G. Xu, C. Smith, and J. Sankar, Recent Advances on the Development of Magnesium Alloys for Biodegradable Implants, Acta Biomater., 2014, 10, p 4561–4573CrossRef
    5.X. Li, C.L. Chu, L. Liu, X.K. Liu, J. Bai, C. Guo, F. Xue, P.H. Lin, and P.K. Chu, Biodegradable Poly-Lactic Acid Based-Composite Reinforced Unidirectionally with High-Strength Magnesium Alloy Wires, Biomaterials, 2015, 49, p 135–144CrossRef
    6.H. Du, Z.J. Wei, X.W. Liu, and E.L. Zhang, Effects of Zn on the Microstructure, Mechanical Property and Bio-Corrosion Property of Mg-3Ca Alloys for Biomedical Application, Mater. Chem. Phys., 2011, 125, p 568–575CrossRef
    7.T. Li, H.L. Zhang, Y. He, N. Wen, and X.T. Wang, Microstructure, Mechanical Properties and In Vitro Degradation Behavior of a Novel Biodegradable Mg-1.5Zn-0.6Zr-0.2Sc Alloy, J. Mater. Sci. Technol., 2015, 31, p 744–750CrossRef
    8.H. Li, Q.M. Peng, X.J. Li, K. Li, Z.S. Han, and D.Q. Fang, Microstructures, Mechanical and Cytocompatibility of Degradable Mg-Zn Based Orthopedic Biomaterials, Mater. Des., 2014, 58, p 43–51CrossRef
    9.X.B. Zhang, Z.X. Ba, Q. Wang, Y.J. Wu, Z.Z. Wang, and Q. Wang, Uniform Corrosion Behavior of GZ51K Alloy with Long Period Stacking Ordered Structure for Biomedical Application, Corros. Sci., 2014, 88, p 1–5CrossRef
    10.H. Qin, Y.C. Zhao, Z.Q. An, M.Q. Cheng, Q. Wang, T. Cheng, Q.J. Wang, J.X. Wang, Y. Jiang, X.L. Zhang, and G.Y. Yuan, Enhanced Antibacterial Properties, Biocompatibility, and Corrosion Resistance of Degradable Mg-Nd-Zn-Zr Alloy, Biomaterials, 2015, 53, p 211–220CrossRef
    11.C.Y. Zhao, F.S. Pan, S. Zhao, H.C. Pan, K. Song, and A.T. Tang, Preparation and Characterization of As-Extruded Mg-Sn Alloys for Orthopedic Applications, Mater. Des., 2015, 70, p 60–67CrossRef
    12.X.B. Zhang, G.Y. Yuan, X.X. Fang, Z.Z. Wang, and T. Zhang, Effects of Solution Treatment on Yield Ratio and Biocorrosion Behaviour of As-Extruded Mg-2.7Nd-0.2Zn-0.4Zr Alloy for Cardiovascular Stent Application, Mater. Technol., 2013, 28, p 155–158CrossRef
    13.X.B. Zhang, Y. Zhang, K. Chen, Z.X. Ba, Z.Z. Wang, and Q. Wang, Microstructure, Mechanical and Corrosion Properties of a Mg-Nd-Zn-Sr-Zr Alloys as Biodegradable Material, Mater. Sci. Technol., 2015, 31, p 866–873CrossRef
    14.K. Chen, J.W. Dai, and X.B. Zhang, Improvement of Corrosion Resistance of Magnesium Alloys for Biomedical Applications, Corros. Rev., 2015, 33, p 101–117
    15.G. Manivasagam and S. Suwas, Biodegradable Mg and Mg Based Alloys for Biomedical Implants, Mater. Sci. Technol., 2014, 30, p 515–520CrossRef
    16.Y.S. Jeong and W.J. Kim, Enhancement of Mechanical Properties and Corrosion Resistance of Mg-Ca Alloys Through Microstructural Refinement by Indirect Extrusion, Corros. Sci., 2014, 82, p 392–403CrossRef
    17.L. Zhang, D. Zhang, Y. Dong, F. Guo, G. Hu, H. Xue, and F. Pan, Microstructure and Tensile Properties of As-Extruded and as Aged Mg-Al-Zn-Mn-Sn Alloy, Mater. Sci. Technol., 2015, 31, p 1088–1095CrossRef
    18.F. Liu, C.X. Chen, J.L. Niu, J. Pei, H. Zhang, H. Huang, and G.Y. Yuan, The Processing of Mg Alloy Micro-Tubes for Biodegradable Vascular Stents, Mater. Sci. Eng. C, 2015, 48, p 400–407CrossRef
    19.X.B. Zhang, Y.J. Xue, Z.Z. Wang, X.C. He, and Q. Wang, Microstructure, Mechanical and Corrosion Properties of Mg-(4−x)Nd-xGd-Sr-Zn-Zr Biomagnesium Alloys, Acta Metall. Sin., 2014, 50, p 979–988
    20.X.B. Zhang, Q. Wang, F.B. Chen, Y.J. Wu, Z.Z. Wang, and Q. Wang, Relation Between LPSO Structure and Biocorrosion Behavior of Biodegradable GZ51K Alloy, Mater. Lett., 2015, 138, p 212–215CrossRef
    21.X.B. Zhang, X.C. He, Y.J. Xue, Z.Z. Wang, and Q. Wang, Microstructure and Corrosion Resistance of as-cast Mg-Nd-Gd-Sr-Zn-Zr Alloys for Biomedical Applications, Mater. Technol., 2014, 29, p 179–187CrossRef
    22.J.S. Zhang, W.B. Zhang, L.P. Bian, W.L. Cheng, X.F. Niu, C.X. Xu, and S.J. Wu, Study of Mg-Gd-Zn-Zr Alloys with Long Period Stacking Ordered Structures, Mater. Sci. Eng. A, 2013, 585, p 268–276CrossRef
    23.Y.J. Wu, L.M. Peng, X.Q. Zeng, D.L. Lin, W.J. Ding, and Y.H. Peng, A High Strength Extruded Mg-Gd-Zn-Zr Alloy with Superplasticity, J. Mater. Res., 2009, 24, p 3596–3602CrossRef
    24.K. Liu, J.H. Zhang, H.Y. Lu, D.X. Tang, L.L. Rokhlin, F.M. Elkin, and J. Meng, Effect of the Long Periodic Stacking Structure and W-phase on the Microstructures and Mechanical Properties of the Mg-8Gd-xZn-0.4Zr Alloys, Mater. Des., 2010, 31, p 210–219CrossRef
    25.F.M. Lu, A.B. Ma, J.H. Jiang, D.H. Yang, D. Song, Y.C. Yuan, and J. Chen, Effect of Multi-Pass Equal Channel Angular Pressing on Microstructure and Mechanical Properties of Mg97.1Zn1Gd1.8Zr0.1 Alloy, Mater. Sci. Eng. A, 2014, 594, p 330–333CrossRef
    26.H.Y. Gao, K. Ikeda, T. Morikawa, K. Higashida, and H. Nakashima, Analysis of Kink Boundaries in Deformed Synchronized Long-Period Stacking Ordered Magnesium Alloys, Mater. Lett., 2015, 146, p 30–33CrossRef
    27.X.H. Shao, Z.Q. Yang, and X.L. Ma, Strengthening and Toughening Mechanisms in Mg-Zn-Y Alloy with a Long Period Stacking Ordered Structure, Acta Mater., 2010, 58, p 4760–4771CrossRef
    28.X.B. Zhang, Z.X. Ba, Z.Z. Wang, Y.J. Xue, and Q. Wang, Microstructure and Biocorrosion Behaviors of Solution Treated and As-Extruded Mg-2.2Nd-xSr-0.3Zr Alloys, Trans. Nonferrous Met. Soc. China, 2014, 24, p 3797–3803CrossRef
    29.S. Manivannan, S.P.K. Babu, and S. Sundarrajan, Corrosion Behavior of Mg-6Al-1Zn-xRE Magnesium Alloy with Minor Addition of Yttrium, J. Mater. Eng. Perform., 2015, 24, p 1649–1655CrossRef
    30.N.T. Kirkland, N. Birbilis, and M.P. Staiger, Assessing the Corrosion of Biodegradable Magnesium Implants: A Critical Review of Current Methodologies and Their Limitations, Acta Biomater., 2012, 8, p 925–936CrossRef
    31.J.C. Zhou, Q. Li, H.X. Zhang, and F.N. Chen, Corrosion Behaviour of AZ91D Magnesium Alloy in Three Different Physiological Environments, J. Mater. Eng. Perform., 2014, 23, p 181–186CrossRef
    32.A. Atrens, M. Liu, and N.I.Z. Abidin, Corrosion Mechanism Applicable to Biodegradable Magnesium Implants, Mater. Sci. Eng. B, 2011, 176, p 1609–1636CrossRef
  • 作者单位:Xiaobo Zhang (1) (2)
    Qian Wang (1) (2)
    Zhixin Ba (1) (2)
    Zhangzhong Wang (1) (2)
    Yajun Xue (1) (2)

    1. School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
    2. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 211167, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
Effects of aging treatment on microstructure, mechanical properties, and corrosion behavior of the as-extruded Mg-5Gd-1Zn-0.6Zr (GZ51K, wt.%) alloy were investigated. Microstructure was observed by optical microscopy and scanning electron microscopy, mechanical properties were tested on a tensile test machine and a microhardness tester, and corrosion behavior was evaluated by mass loss and polarization tests. It is found that most of equiaxed α-Mg grains have long-period stacking ordered (LPSO) structure, and some of them have no LPSO structure. Long-elongated grains are formed in the as-extruded alloy due to partial recrystallization and disappear after being aged at 200 and 220 °C. The as-extruded alloy exhibits both high-yield strength and high ductility. The mechanical properties of the alloy are not apparently enhanced, but the corrosion resistance is significantly improved after aging treatment. Moreover, the alloy with LPSO structure presents uniform corrosion mode in simulated body fluid. The GZ51K alloy with high mechanical properties and uniform corrosion behavior is worthy to be further investigated for biomedical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700