x VPO4x?≤-) between 3.0 and 0.01?V are systematically analyzed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic intermittent titration technique (GITT). The results indicate that the \( {D}_{{\mathrm{Li}}^{+}} \) values depend heavily on the voltage state. Based on the results from EIS and GITT, the diffusion coefficients ( \( {D}_{{\mathrm{Li}}^{+}} \) ) measured in a single-phase region below 1.7?V have relatively steady values of about 10? (EIS) and 10?0 (GITT)?cm2?s?, respectively, while the \( {D}_{{\mathrm{Li}}^{+}} \) values in the single-phase region above 1.9?V decrease rapidly from 10? to 10?1?cm2?s? due to concentration of lithium ions in the bulk LiVPO4F. The Li+ chemical diffusion coefficients measured in the two-phase region by GITT range a lot from 10? to 10?4?cm2?s?, while the \( {D}_{{\mathrm{Li}}^{+}} \) values in the two-phase region determined by CV are around 10?0?cm2?s?. By the GITT, the \( {D}_{{\mathrm{Li}}^{+}} \) values in the two-phase region vary in non-linear shape with the charge–discharge voltage, which is ascribed to strong interactions of Li+ with other ions." />
Systematic investigation on determining chemical diffusion coefficients of lithium ion in Li1--em class="a-plus-plus">x VPO4F (0?≤-em class="a-plus-plus">x?≤-)
详细信息    查看全文
  • 作者:Jiexi Wang ; Xinhai Li ; Zhixing Wang ; Huajun Guo…
  • 关键词:Chemical diffusion coefficient ; Electrochemical impedance spectroscopy ; Cyclic voltammetry ; Galvanostatic intermittent titration technique ; Lithium vanadium fluorophosphate
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:19
  • 期:1
  • 页码:153-160
  • 全文大小:2,010 KB
  • 参考文献:1. Reddy MV, Subba Rao GV, Chowdari BV (2013) Chem Rev 113:5364-457 CrossRef
    2. Lu L, Han X, Li J, Hua J, Ouyang M (2013) J Power Sources 226:272-88 CrossRef
    3. Tarascon JM (2010) Philos Trans A 368:3227-241 CrossRef
    4. Wu F, Wang Z, Li X, Guo H (2011) J Mater Chem 21:12675-2681 CrossRef
    5. Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ (2013) Chem Soc Rev 42:9011-034 CrossRef
    6. Wu HB, Chen JS, Hng HH, Lou XWD (2012) Nanoscale 4:2526-542 CrossRef
    7. Nguyen HT, Zamfir MR, Duong LD, Lee YH, Bondavalli P, Pribat D (2012) J Mater Chem 22:24618-6426 CrossRef
    8. Kim J-G, Shi D, Park M-S, Jeong G, Heo Y-U, Seo M, Kim Y-J, Kim J, Dou S (2013) Nano Res 6:365-72 CrossRef
    9. Cheng L, Yan J, Zhu G-N, Luo J-Y, Wang C-X, Xia Y-Y (2010) J Mater Chem 20:595-02 CrossRef
    10. Jung H-G, Myung S-T, Yoon CS, Son S-B, Oh KH, Amine K, Scrosati B, Sun Y-K (2011) Energy Environ Sci 4:1345-351 CrossRef
    11. Aravindan V, Chuiling W, Madhavi S (2012) RSC Adv 2:7534-539 CrossRef
    12. Ma R, Shao L, Wu K, Shui M, Wang D, Pan J, Long N, Ren Y, Shu J (2013) ACS Appl Mater Interfaces 5:8615-627 CrossRef
    13. Mba JMA, Masquelier C, Suard E, Croguennec L (2012) Chem Mater 24:1223-234 CrossRef
    14. Barker J, Gover RKB, Burns P, Bryan A (2005) Electrochem Solid-State Lett 8:A285–A287 CrossRef
    15. Plashnitsa LS, Kobayashi E, Okada S, Yamaki J (2011) Electrochim Acta 56:1344-351 CrossRef
    16. Barker J, Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL (2005) J Power Sources 146:516-20 CrossRef
    17. Mba JMA, Croguennec L, Basir NI, Barker J, Masquelier C (2012) J Electrochem Soc 159:A1171–A1175 CrossRef
    18. Barker J, Saidi MY, Swoyer JL (2003) J Electrochem Soc 150:A1394–A1398 CrossRef
    19. Gover RKB, Burns P, Bryan A, Saidi MY, Swoyer JL, Barker J (2006) Solid State Ionics 177:2635-638 CrossRef
    20. Li Y, Zhou Z, Gao XP, Yan J (2006) J Power Sources 160:633-37 CrossRef
    21. Zheng J-C, Zhang B, Yang Z-H (2012) J Power Sources 202:380-83 CrossRef
    22. Kosova NV, Devyatkina ET, Slobodyuk AB, Gutakovskii AK (2014) J Solid State Electrochem 18:1389-399 CrossRef
    23. Sun X, Xu Y, Jia M, Ding P, Liu Y, Chen K (2013) J Mater Chem A 1:2501-507 CrossRef
    24. Wang
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
The chemical diffusion coefficients of lithium ion ( \( {D}_{{\mathrm{Li}}^{+}} \) ) in Li1--em class="a-plus-plus">x VPO4F (0?≤-em class="a-plus-plus">x?≤-) between 3.0 and 0.01?V are systematically analyzed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic intermittent titration technique (GITT). The results indicate that the \( {D}_{{\mathrm{Li}}^{+}} \) values depend heavily on the voltage state. Based on the results from EIS and GITT, the diffusion coefficients ( \( {D}_{{\mathrm{Li}}^{+}} \) ) measured in a single-phase region below 1.7?V have relatively steady values of about 10? (EIS) and 10?0 (GITT)?cm2?s?, respectively, while the \( {D}_{{\mathrm{Li}}^{+}} \) values in the single-phase region above 1.9?V decrease rapidly from 10? to 10?1?cm2?s? due to concentration of lithium ions in the bulk LiVPO4F. The Li+ chemical diffusion coefficients measured in the two-phase region by GITT range a lot from 10? to 10?4?cm2?s?, while the \( {D}_{{\mathrm{Li}}^{+}} \) values in the two-phase region determined by CV are around 10?0?cm2?s?. By the GITT, the \( {D}_{{\mathrm{Li}}^{+}} \) values in the two-phase region vary in non-linear shape with the charge–discharge voltage, which is ascribed to strong interactions of Li+ with other ions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700