An enhanced algorithm to estimate BDS satellite's differential code biases
详细信息    查看全文
  • 作者:Chuang Shi ; Lei Fan ; Min Li ; Zhizhao Liu ; Shengfeng Gu ; Shiming Zhong…
  • 关键词:Beidou Navigation Satellite System ; Differential code bias ; Uncombined precise point positioning ; Ionospheric delay ; Geometry ; free linear combination of phase ; smoothed range
  • 刊名:Journal of Geodesy
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:90
  • 期:2
  • 页码:161-177
  • 全文大小:1,965 KB
  • 参考文献:Abdel-salam MA-T (2005) Precise point positioning using un-differenced code and carrier phase observations. PhD Thesis, University of Calgary, Calgary
    Arikan F, Nayir H, Sezen U, Arikan O (2008) Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Sci 43(4):762–770. doi:10.​1029/​2007RS003785 CrossRef
    Bishop G, Klobuchar J, Doherty P (1985) Multipath effects on the determination of absolute ionospheric time delay from GPS signals. Radio Sci 20(3):388–396. doi:10.​1029/​RS020i003p00388 CrossRef
    Brunini C, Azpilicueta F (2010) GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J Geod 84(5):293–304. doi:10.​1007/​s00190-010-0367-5 CrossRef
    Cheng P, Li W, Bei J, Wen H, Cai Y, Wang H (2011) Performance of precise point positioning (PPP) based on uncombined dual-frequency GPS observables. Surv Rev 43(322):343–350. doi:10.​1179/​003962611X130555​61708588 CrossRef
    Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120. doi:10.​1007/​s00190-006-0093-1 CrossRef
    Coco DS, Coker C, Dahlke SR, Clynch JR (1991) Variability of GPS satellite differential group delay biases. IEEE Trans Aerosp Electron Syst 27(6):931–938. doi:10.​1109/​7.​104264 CrossRef
    CSNO (2012) BeiDou navigation satellite system signal in space interface control document. China Satellite Navigation Office. http://​www.​beidou.​gov.​cn/​attach/​2013/​12/​26/​20131226b8a6182f​a73a4ab3a5f107f7​62283712.​pdf
    Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern
    Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365. doi:10.​1007/​s00190.​008-0281-2 CrossRef
    Deng Z, Zhao Q, Springer T, Prange L, Uhlemann M (2014) Orbit and clock determination-BeiDou. In: Proceedings of IGS workshop, Pasadena, 23–27 June 2014
    Dow JM, Neilan R, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. doi:10.​1007/​s00190-008-0300-3 CrossRef
    Feltens J, Schaer S (1998) IGS products for the ionosphere. In: Proceedings of the 1998 IGS analysis centers workshop, ESOC, Darmstadt, 9–11 February 1998
    Griffiths J, Ray JR (2008) On the precision and accuracy of IGS orbits. J Geod 83(3–4):277–287. doi:10.​1007/​s00190-008-0237-6
    Hernández-Pajares M, Juan J, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer S, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275. doi:10.​1007/​s00190-008-0266-1 CrossRef
    Jee G, Lee HB, Kim Y, Chung JK, Cho J (2010) Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: Ionospheric perspective. J Geophys Res Space Phys 115(A10):161–168. doi:10.​1029/​2010JA015432 CrossRef
    Komjathy A, Sparks L, Wilson BD, Mannucci AJ (2005) Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci 40(6). doi:10.​1029/​2005rs003279
    Le AQ, Tiberius C (2007) Single-frequency precise point positioning with optimal filtering. GPS Solut 11(1):61–69. doi:10.​1007/​s10291-006-0033-9 CrossRef
    Leandro RF, Santos MC, Langley RB (2011) Analyzing GNSS data in precise point positioning software. GPS Solut 15(1):1–13. doi:10.​1007/​s10291-010-0173-9 CrossRef
    Li Z, Yuan Y, Li H, Ou J, Huo X (2012) Two-step method for the determination of the differential code biases of COMPASS satellites. J Geod 86(11):1059–1076. doi:10.​1007/​s00190-012-0565-4 CrossRef
    Li XX, Ge MR, Zhang HP, Wickert J (2013) A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. J Geod 87(5):405–416. doi:10.​1007/​s00190-013-0611-x CrossRef
    Li M, Qu L, Zhao Q, Guo J, Su X, Li X (2014a) Precise point positioning with the BeiDou navigation satellite system. Sensors 14(1):927–943. doi:10.​3390/​s140100927
    Li Z, Yuan Y, Fan L, Huo X, Hsu H (2014b) Determination of the differential code bias for current BDS satellites. IEEE Trans Geosci Remote Sens 52(7):3968–3979. doi:10.​1109/​TGRS.​2013.​2278545
    Liu Z (2011) A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. J Geod 85(3):171–183. doi:10.​1007/​s00190-010-0426-y CrossRef
    Lou Y, Liu Y, Shi C, Yao X, Zheng F (2014) Precise orbit determination of BeiDou constellation based on BETS and MGEX network. Sci Rep 4. doi:10.​1038/​srep04692
    Manucci A, Iijima B, Lindqwister U, Pi X, Sparks L, Wilson B (1999) GPS and ionosphere. Review of radio science. Oxford University Press, Oxford, pp 1996–1999
    Mayer C, Becker C, Jakowski N, Meurer M (2011) Ionosphere monitoring and inter-frequency bias determination using Galileo: first results and future prospects. Adv Space Res 47(5):859–866. doi:10.​1016/​j.​asr.​2010.​12.​006 CrossRef
    Montenbruck O, Hauschild A, Steigenberger P (2014) Differential code bias estimation using multi-GNSS observations and global ionosphere maps. Navigation 31(3):191–201. doi:10.​1002/​navi.​64 CrossRef
    Øvstedal O (2002) Absolute positioning with single-frequency GPS receivers. GPS Solut 5(4):33–44. doi:10.​1007/​PL00012910 CrossRef
    Rizos C, Montenbruck O, Weber R, Weber G, Neilan R, Hugentobler U (2013) The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. Proc ION Pac PNT Meet 8900(6):289–295
    Sardon E, Zarraoa N (1997) Estimation of total electron content using GPS data: how stable are the differential satellite and receiver instrumental biases? Radio Sci 32(5):1899–1910. doi:10.​1029/​97rs01457 CrossRef
    Sardon E, Rius A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observations. Radio Sci 29(3):577–586. doi:10.​1029/​94RS00449 CrossRef
    Schaer S, Steigenberger P (2006). Determination and use of GPS differential code bias values. In: Paper presented at IGS workshop, Darmstadt, 8–11 May 2006
    Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of compass GEO and IGSO satellites. J Geod 87(6):515–525. doi:10.​1007/​s00190-013-0625-4 CrossRef
    Tu R, Ge MR, Zhang HP, Huang GW (2013) The realization and convergence analysis of combined PPP based on raw observation. Adv Space Res 52(1):211–221. doi:10.​1016/​j.​asr.​2013.​03.​005 CrossRef
    Wei L, Pengfei C, Jinzhong B, Hanjiang W, Hua W (2012) Calibration of regional ionospheric delay with uncombined precise point positioning and accuracy assessment. J Earth Syst Sci 121(4):989–999. doi:10.​1007/​s12040-012-0206-6 CrossRef
    Wei C, Zhang Q, Fan L, Zhang S, Huang G, Chen K (2014) Estimate DCB of BDS satellites based on the observations of GPS/BDS. In: 2014 Proceedings of the China satellite navigation conference (CSNC), vol II. Springer, vol 304, pp 351–362. doi:10.​1007/​978-3-642-54743-0_​29
    Wilson BD, Mannucci AJ (1993) Instrumental biases in ionospheric measurement derived from GPS data. In: Proceedings of ION GPS-93, Salt Like City, 22–24 September 1993, pp 1343–1351
    Yuan Y, Ou J (2004) A generalized trigonometric series function model for determining ionospheric delay. Prog Nat Sci 14(11):1010–1014. doi:10.​1080/​1002007041233134​4711 CrossRef
    Yuan Y, Huo X, Ou J (2007) Models and methods for precise determination of ionospheric delay using GPS. Prog Nat Sci 17(2):187–196. doi:10.​1080/​1002007061233134​3245 CrossRef
    Zhang H, Gao Z, Ge M, Niu X, Huang L, Tu R, Li X (2013) On the convergence of ionospheric constrained precise point positioning (IC-PPP) based on undifferential uncombined raw GNSS observations. Sensors 13(11):15708–15725. doi:10.​3390/​s131115708
    Zhao Q, Guo J, Li M, Qu L, Hu Z, Shi C, Liu J (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geod 87(5):1–12. doi:10.​1007/​s00190-013-0622-7 CrossRef
  • 作者单位:Chuang Shi (1)
    Lei Fan (1)
    Min Li (1)
    Zhizhao Liu (2)
    Shengfeng Gu (1)
    Shiming Zhong (3)
    Weiwei Song (1)

    1. GNSS Research Center, Wuhan University, 129 Luoyu Road, Wuhan, 430079, China
    2. Department of Surveying and Geo-informatics, Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong, China
    3. Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 340 Xudong Street, Wuhan, 430077, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Mathematical Applications in Geosciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1394
文摘
This paper proposes an enhanced algorithm to estimate the differential code biases (DCB) on three frequencies of the BeiDou Navigation Satellite System (BDS) satellites. By forming ionospheric observables derived from uncombined precise point positioning and geometry-free linear combination of phase-smoothed range, satellite DCBs are determined together with ionospheric delay that is modeled at each individual station. Specifically, the DCB and ionospheric delay are estimated in a weighted least-squares estimator by considering the precision of ionospheric observables, and a misclosure constraint for different types of satellite DCBs is introduced. This algorithm was tested by GNSS data collected in November and December 2013 from 29 stations of Multi-GNSS Experiment (MGEX) and BeiDou Experimental Tracking Stations. Results show that the proposed algorithm is able to precisely estimate BDS satellite DCBs, where the mean value of day-to-day scattering is about 0.19 ns and the RMS of the difference with respect to MGEX DCB products is about 0.24 ns. In order to make comparison, an existing algorithm based on IGG: Institute of Geodesy and Geophysics, China (IGGDCB), is also used to process the same dataset. Results show that, the DCB difference between results from the enhanced algorithm and the DCB products from Center for Orbit Determination in Europe (CODE) and MGEX is reduced in average by 46 % for GPS satellites and 14 % for BDS satellites, when compared with DCB difference between the results of IGGDCB algorithm and the DCB products from CODE and MGEX. In addition, we find the day-to-day scattering of BDS IGSO satellites is obviously lower than that of GEO and MEO satellites, and a significant bias exists in daily DCB values of GEO satellites comparing with MGEX DCB product. This proposed algorithm also provides a new approach to estimate the satellite DCBs of multiple GNSS systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700