Impact of anthropogenic aerosols on summer precipitation in the Beijing–Tianjin–Hebei urban agglomeration in China: Regional climate modeling using WRF-Chem
详细信息    查看全文
  • 作者:Jun Wang ; Jinming Feng ; Qizhong Wu ; Zhongwei Yan
  • 关键词:anthropogenic aerosols ; summer precipitation ; urban agglomeration ; regional climate
  • 刊名:Advances in Atmospheric Sciences
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:33
  • 期:6
  • 页码:753-766
  • 全文大小:6,377 KB
  • 参考文献:Ackermann, I. J., H. Hass, M. Memmesheimer, A. Ebel, F. S. Binkowski, and U. Shankar, 1998: Modal aerosol dynamics model for Europe: Development and first applications. Atmos. Environ., 32, 2981–2999, doi: 10.1016/S1352–2310(98)00006–5.CrossRef
    Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 1337–1342, doi: 10.1126/science.1092779.CrossRef
    Andreae, M. O., C. D. Jones, and P.M. Cox, 2005: Strong presentday aerosol cooling implies a hot future. Nature, 435, 1187–1190, doi: 10.1038/nature03671.CrossRef
    Chan, C. K., and X. H. Yao, 2008: Air pollution in mega cities in China. Atmos. Environ., 42, 1–42, doi: 10.1016/j.atmosenv.2007.09.003.CrossRef
    Chen, F., and J. Dudhia, 2001: Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.
    Chen, S.-H., and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan., 80, 99–118.CrossRef
    Duan, F. K., X. D. Liu, T. Yu, and H. Cachier, 2004: Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos. Environ., 38, 1275–1282, doi: 10.1016/j.atmosenv.2003.11.037.CrossRef
    Fast, J., and Coauthors, 2009: Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: Implications for assessing treatments of secondary organic aerosols. Atmos. Chem. Phys., 9, 6191–6215.CrossRef
    Fast, J. D., W. I. Gustafson Jr., R. C. Easter, R. A. Zaveri, J. C. Barnard, E. G. Chapman, G. A. Grell, and S. E. Peckham, 2006: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J. Geophys. Res., 111: D21305, doi: 10.1029/2005JD006721.CrossRef
    Fan, J. W., L. Leung, Z. Q. Li, H. Morrison, H. B. Chen, Y. Q. Zhou, Y. Qian, and Y.Wang, 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res., 117: D00K36, doi: 10.1029/2011JD016537.
    Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14), 38–1–38-4, doi: 10.1029/2002GL015311.CrossRef
    Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry within theWRF model. Atmos. Environ., 39, 6957–6975, doi: 10.1016/j.atmosenv.2005.04.027.CrossRef
    Guo, X. L., D. H. Fu, X. Guo, and C.M. Zhang, 2014: A case study of aerosol impacts on summer convective clouds and precipitation over northern China. Atmos. Res., 142, 142–157, doi: 10.1016/j.atmosres.2013.10.006.CrossRef
    Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113: D13103, doi: 10.1029/2008JD009944.CrossRef
    Janjic, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945.CrossRef
    Kaufman, Y. J., D. Tanré, and O. Boucher, 2002: A satellite view of aerosols in the climate system. Nature, 419, 215–223, doi: 10.1038/nature01091.CrossRef
    Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteorol. Soc., 131, 2639–2663, doi: 10.1256/qj.04.62.CrossRef
    Khain, A. P., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004, doi: 10.1088/1748–93264/1/015004.CrossRef
    Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329–358.CrossRef
    Lacke, M. C., T. L. Mote, and J. M. Shepherd, 2009: Aerosols and associated precipitation patterns in Atlanta. Atmos. Environ., 43, 4359–4373, doi: 10.1016/j.atmosenv.2009.04.022.CrossRef
    Li, Z. Q., F. Niu, J. W. Fan, Y. G. Liu, D. Rosenfeld, and Y. N. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nature Geosci., 4, 888–894, doi: 10.1038/ngeo1313.CrossRef
    Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.CrossRef
    Liu, Y. G., P. H. Daum, and R. L. McGraw, 2005: Size truncation effect, threshold behavior, and a new type of autoconversion parameterization. Geophys. Res. Lett., 32, L11811, doi: 10.1029/2005GL022636.CrossRef
    McKeen, S., and Coauthors, 2007: Evaluation of several PM2.5 forecast models using data collected during the ICARTT/ NEAQS 2004 field study. J. Geophys. Res., 112: D10S20, doi: 10.1029/2006JD007608.CrossRef
    Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851–875.CrossRef
    Miao, S. G., F. Chen, Q. C. Li, and S. Y. Fan, 2011: Impacts of urban processes and urbanization on summer precipitation: a case study of heavy rainfall in Beijing on 1 August 2006. J. Appl. Meteor. Climatol., 50, 806–825.CrossRef
    Niyogi, D., P. Pyle, M. Lei, S. P. Arya, C. M. Kishtawal, M. Shepherd, F. Chen, and B. Wolfe, 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 1129–1144.CrossRef
    Ntelekos, A. A., J. A. Smith, L. Donner, J. D. Fast, W. I. Gustafson Jr., E. G. Chapman, and W. F. Krajewski, 2009: The effects of aerosols on intense convective precipitation in the northeastern United States. Quart. J. Roy. Meteorol. Soc., 135, 1367–1391.CrossRef
    Orville, H. D., P. A. Eckhoff, J. E. Peak, J. H. Hirsch, and F. J. Kopp, 1981: Numerical simulation of the effects of cooling tower complexes on clouds and severe storms. Atmos. Environ., 15, 823–836.CrossRef
    Qian, W. H., J. L. Fu, and Z. W. Yan, 2007: Decrease of light rain events in summer associated with a warming environment in China during 1961–2005. Geophys. Res. Lett., 34, L11705, doi: 10.1029/2007GL029631.CrossRef
    Qian, Y., W. I. Gustafson, L. R. Leung, and S. J. Ghan, 2009a: Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations. J. Geophys. Res., 114: D03108, doi: 10.1029/2008JD011039.CrossRef
    Qian, Y., D. Y. Gong, J. W. Fan, L. R. Leung, R. Bennartz, D. L. Chen, and W. G. Wang, 2009b: Heavy pollution suppresses light rain in China: Observations and modeling. J. Geophys. Res., 114: D00K02, doi: 10.1029/2008JD011575.CrossRef
    Qian, Y., H. L. Wang, R. D. Zhang, M. G. Flanner, and P. J. Rasch, 2014: A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China. Environ. Res. Lett., 9, 064001, doi: 10.1088/1748–9326/9/6/064001.CrossRef
    Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 2119–2124, doi: 10.1126/science.1064034.CrossRef
    Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 3105–3108, doi: 10.1029/1999GL006066.CrossRef
    Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 1793–1796, doi: 10.1126/science.287.5459.1793.CrossRef
    Rosenfeld, D., and W. L. Woodley, 2003: Spaceborne inferences of cloud microstructure and precipitation processes: Synthesis, insights, and implications. Meteor. Monogr., Vol. 29, 59 pp.
    Rosenfeld, D., J. Dai, X. Yu, Z. Y. Yao, X. H. Xu, X. Yang, and C. L. Du, 2007: Inverse relations between amounts of air pollution and orographic precipitation. Science, 315, 1396–1398, doi: 10.1126/science.1137949.CrossRef
    Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: how do aerosols affect precipitation? Science, 321, 1309–1313, doi: 10.1126/science.1160606.CrossRef
    Schell, B., I. J. Ackermann, H. Hass, F. S. Binkowski, and A. Ebel, 2001: Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res., 106, 28275–28293.CrossRef
    Shem, W., and M. Shepherd, 2009: On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmos. Res., 92, 172–189, doi: 10.1016/j.atmosres.2008.09.013.CrossRef
    Shepherd, J. M., 2005: A review of current investigations of urbaninduced rainfall and recommendations for the future. Earth Interactions, 9, 1–27.CrossRef
    Shepherd, J. M., and S. J. Burian, 2003: Detection of urbaninduced rainfall anomalies in a major coastal city. Earth Interactions, 7, 1–17.CrossRef
    Stockwell, W. R., P. Middleton, J. S. Chang, and X. Y. Tang, 1990: The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res., 95, 16343–16367.CrossRef
    Streets, D. G., and Coauthors, 2003: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res., 108(D21), 8809, doi: 10.1029/2002JD003093.CrossRef
    Tuccella, P., G. Curci, G. Visconti, B. Bessagnet, L. Menut, and R. J. Park, 2012: Modeling of gas and aerosol with WRF/Chem over Europe: Evaluation and sensitivity study. J. Geophys. Res., 117: D03303, doi: 10.1029/2011JD016302.CrossRef
    van den Heever, S. C., and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828–850, doi: 10.1175/JAM2492.1.CrossRef
    Wang, X. Y., and Coauthors, 2010: WRF-Chem simulation of East Asian air quality: Sensitivity to temporal and vertical emissions distributions. Atmos. Environ., 44, 660–669, doi: 10.1016/j.atmosenv.2009.11.011.CrossRef
    Wang, Y., Q. Wan, W. Meng, F. Liao, H. Tan, and R. Zhang, 2011: Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China. Atmos. Chem. Phys., 11, 12421–12436, doi: 10.5194/acp-11–12421-2011.CrossRef
    Wu, L. T., H. Su, and J. H. Jiang, 2013: Regional simulation of aerosol impacts on precipitation during the East Asian summer monsoon. J. Geophys. Res., 118, 6454–6467, doi: 10.1002/jgrd.50527.
    Wu, Q. Z., Z. F. Wang, A. Gbaguidi, C. Gao, L. N. Li, and W. Wang, 2011: A numerical study of contributions to air pollution in Beijing during CAREBeijing-2006. Atmos. Chem. Phys., 11, 5997–6011, doi: 10.5194/acp-11–5997-2011.CrossRef
    Wu, Q. Z., W. S. Xu, X. J. Zhao, and Y. J. He, 2012: The spatial optimization of the PM10 emission in Beijing and its verification by the numerical model. Acta Scientiae Circumstantiae, 32, 2548–2558. (in Chinese)
    Wu, Q. Z., W. S. Xu, A. J. Shi, Y. T. Li, X. J. Zhao, Z. F. Wang, J. X. Li, and L. N. Wang, 2014: Air quality forecast of PM10 in Beijing with Community Multi-scale Air Quality modeling (CMAQ) system: Emission and improvement. Geoscientific Model Development, 7, 2243–2259.CrossRef
    Zhang, Q., and Coauthors, 2009a: Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys., 9, 5131–5153, doi: 10.5194/acp-9–5131-2009.CrossRef
    Zhang, Y., M. K. Dubey, S. C. Olsen, J. Zheng, and R. Zhang, 2009b: Comparisons of WRF/Chem simulations in Mexico city with ground-based RAMA measurements during the 2006-MILAGRO. Atmos. Chem. Phys., 9, 3777–3798, doi: 10.5194/acp9–3777-2009.CrossRef
    Zhang, Y. X., and M. K. Dubey, 2009: Comparisons of WRF/ Chem simulated O3 concentrations in Mexico city with ground-based RAMA measurements during the MILAGRO period. Atmos. Environ., 43, 4622–4631.CrossRef
    Zhao, C., and Coauthors, 2014: Simulating black carbon and dust and their radiative forcing in seasonal snow: A case study over North China with field campaign measurements. Atmos. Chem. Phys., 14, 11475–11491, doi: 10.5194/acp14–11475-2014.CrossRef
  • 作者单位:Jun Wang (1)
    Jinming Feng (1)
    Qizhong Wu (2)
    Zhongwei Yan (1)

    1. Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
    2. College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
  • 刊物主题:Atmospheric Sciences; Meteorology; Geophysics/Geodesy;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9533
文摘
The WRF model with chemistry (WRF-Chem) was employed to simulate the impacts of anthropogenic aerosols on summer precipitation over the Beijing–Tianjin–Hebei urban agglomeration in China. With the aid of a high-resolution gridded inventory of anthropogenic emissions of trace gases and aerosols, we conducted relatively long-term regional simulations, considering direct, semi-direct and indirect effects of the aerosols. Comparing the results of sensitivity experiments with and without emissions, it was found that anthropogenic aerosols tended to enhance summer precipitation over the metropolitan areas. Domain-averaged rainfall was increased throughout the day, except for the time around noon. Aerosols shifted the precipitation probability distribution from light or moderate to extreme rain. Further analysis showed that the anthropogenic aerosol radiative forcing had a cooling effect at the land surface, but a warming effect in the atmosphere. However, enhanced convective strength and updrafts accompanied by water vapor increases and cyclone-like wind shear anomalies were found in the urban areas. These responses may originate from cloud microphysical effects of aerosols on convection, which were identified as the primary cause for the summer rainfall enhancement.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700