Notable epigenetic role of hyperhomocysteinemia in atherogenesis
详细信息    查看全文
  • 作者:Shuyu Zhou (1)
    Zhizhong Zhang (1)
    Gelin Xu (1)

    1. Department of Neurology
    ; Jinling Hospital ; Nanjing University School of Medicine ; 305 East Zhongshan Road ; Nanjing ; 210002 ; Jiangsu Province ; China
  • 关键词:Atherosclerosis ; Epigenetics ; DNA methylation ; Hyperhomocysteinemia
  • 刊名:Lipids in Health and Disease
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:388 KB
  • 参考文献:1. Berger, SL, Kouzarides, T, Shiekhattar, R, Shilatifard, A (2009) An operational definition of epigenetics. Genes Dev 23: pp. 781-783 CrossRef
    2. Singal, R, Ginder, GD (1999) DNA methylation. Blood 93: pp. 4059-4070
    3. Bird, AP (1985) CpG-rich islands and the function of DNA methylation. Nature 321: pp. 209-213 CrossRef
    4. Kerkel, K, Spadola, A, Yuan, E, Kosek, J, Jiang, L, Hod, E, Li, K, Murty, VV, Schupf, N, Vilain, E (2008) Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet 40: pp. 904-908 CrossRef
    5. Shoemaker, R, Deng, J, Wang, W, Zhang, K (2010) Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res 20: pp. 883-889 CrossRef
    6. Bell, JT, Pai, AA, Pickrell, JK, Gaffney, DJ, Pique-Regi, R, Degner, JF, Gilad, Y, Pritchard, JK (2011) DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 12: pp. R10 CrossRef
    7. Arnett, DK (2013) SNPs located at CpG sites modulate genome-epigenome interaction. Epigenetics 8: pp. 802-806 CrossRef
    8. Zaina, S (2014) Unraveling the DNA methylome of atherosclerosis. Curr Opin Lipidol 25: pp. 148-153 CrossRef
    9. Newman, P (1999) Can reduced folic acid and vitamin B12 levels cause deficient DNA methylation producing mutations which initiate atherosclerosis?. Med Hypotheses 53: pp. 421-424 CrossRef
    10. Holdt, LM, Teupser, D (2013) From genotype to phenotype in human atherosclerosis-recent findings. Curr Opin Lipidol 24: pp. 410
    11. De Bree, A, Verschuren, WM, Kromhout, D, Kluijtmans, L, Blom, HJ (2002) Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 54: pp. 599-618 CrossRef
    12. Collaboration, HS (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288: pp. 2015-2022 CrossRef
    13. Wald, DS, Law, M, Morris, JK (2002) Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325: pp. 1202 CrossRef
    14. Epstein, FH, Welch, GN, Loscalzo, J (1998) Homocysteine and atherothrombosis. N Engl J Med 338: pp. 1042-1050 CrossRef
    15. Domagala, TB, Undas, A, Libura, M, Szczeklik, A (1998) Pathogenesis of vascular disease in hyperhomocysteinaemia. J Cardiovasc Risk 5: pp. 239-247 CrossRef
    16. Faraci, FM, Lentz, SR (2004) Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke 35: pp. 345-347 CrossRef
    17. Finkelstein, J (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157: pp. S40-S44 CrossRef
    18. Cantoni, G (1985) The role of S-adenosylhomocysteine in the biological utilization of S-adenosylmethionine. Prog Clin Biol Res 198: pp. 47-65
    19. Chiang, PK, Cantoni, GL (1979) Perturbation of biochemical transmethylations by 3-deazaadenosine in vivo. Biochem Pharmacol 28: pp. 1897-1902 CrossRef
    20. Hoffman, D, Marion, D, Cornatzer, W, Duerre, J (1980) S-Adenosylmethionine and S-adenosylhomocystein metabolism in isolated rat liver. Effects of L-methionine, L-homocystein, and adenosine. J Biol Chem 255: pp. 10822-10827
    21. Hoffman, DR, Cornatzer, WE, Duerre, JA (1979) Relationship between tissue levels of S-adenosylmethionine, S-adenosylhomocysteine, and transmethylation reactions. Can J Biochem 57: pp. 56-64 CrossRef
    22. Selhub, J (1999) Homocysteine metabolism. Annu Rev Nutr 19: pp. 217-246 CrossRef
    23. Kaul, S, Zadeh, AA, Shah, PK (2006) Homocysteine Hypothesis for Atherothrombotic Cardiovascular Disease: Not Validated. J Am Coll Cardiol 48: pp. 914-923 CrossRef
    24. Wierzbicki, AS (2007) Homocysteine and cardiovascular disease: a review of the evidence. Diab Vasc Dis Res 4: pp. 143-149 CrossRef
    25. Frosst, P, Blom, HJ, Milos, R, Goyette, P, Sheppard, CA, Matthews, RG, Boers, G, den Heijer, M, Kluijtmans, L, Van Den Heuvel, LP (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10: pp. 111-113 CrossRef
    26. Brustolin, S, Giugliani, R, F茅lix, T (2010) Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res 43: pp. 1-7 CrossRef
    27. Weiss, N, Keller, C, Hoffmann, U, Loscalzo, J (2002) Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia. Vasc Med 7: pp. 227-239 CrossRef
    28. Yi, P, Melnyk, S, Pogribna, M, Pogribny, IP, Hine, RJ, James, SJ (2000) Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 275: pp. 29318-29323 CrossRef
    29. Loehrer, FM, Tsch枚pl, M, Angst, CP, Litynski, P, J盲ger, K, Fowler, B, Haefeli, WE (2001) Disturbed ratio of erythrocyte and plasma S-adenosylmethionine/ S-adenosylhomocysteine in peripheral arterial occlusive disease. Atherosclerosis 154: pp. 147-154 CrossRef
    30. Castro, R, Rivera, I, Struys, EA, Jansen, E, Ravasco, P, Camilo, ME, Blom, HJ, Jakobs, C, de Almeida, IT (2003) Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem 49: pp. 1292-1296 CrossRef
    31. Lund, G, Andersson, L, Lauria, M, Lindholm, M, Fraga, MF, Villar-Garea, A, Ballestar, E, Esteller, M, Zaina, S (2004) DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem 279: pp. 29147-29154 CrossRef
    32. Devlin, AM, Arning, E, Bottiglieri, T, Faraci, FM, Rozen, R, Lentz, SR (2004) Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice. Blood 103: pp. 2624-2629 CrossRef
    33. Ehrlich, M, Gama-Sosa, MA, Huang, L-H, Midgett, RM, Kuo, KC, McCune, RA, Gehrke, C (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res 10: pp. 2709-2721 CrossRef
    34. Bird, AP (1987) CpG islands as gene markers in the vertebrate nucleus. Trends Genet 3: pp. 342-347 CrossRef
    35. Aoyama, T, Okamoto, T, Nagayama, S, Nishijo, K, Ishibe, T, Yasura, K, Nakayama, T, Nakamura, T, Toguchida, J (2004) Methylation in the core-promoter region of the chondromodulin-I gene determines the cell-specific expression by regulating the binding of transcriptional activator Sp3. J Biol Chem 279: pp. 28789-28797 CrossRef
    36. Miranda, TB, Jones, PA (2007) DNA methylation: the nuts and bolts of repression. J Cell Physiol 213: pp. 384-390 CrossRef
    37. Turunen, MP, Aavik, E, Yl盲-Herttuala, S (2009) Epigenetics and atherosclerosis. Biochim Biophys Acta (BBA)-General Subjects 1790: pp. 886-891 CrossRef
    38. Wierda, RJ, Geutskens, SB, Jukema, JW, Quax, P, van den Elsen, PJ (2010) Epigenetics in atherosclerosis and inflammation. J Cell Mol Med 14: pp. 1225-1240 CrossRef
    39. Handy, DE, Castro, R, Loscalzo, J (2011) Epigenetic Modifications Basic Mechanisms and Role in Cardiovascular Disease. Circulation 123: pp. 2145-2156 CrossRef
    40. Lund, G, Zaina, S (2011) Atherosclerosis: an epigenetic balancing act that goes wrong. Curr Atheroscler Rep 13: pp. 208-214 CrossRef
    41. Baccarelli, A, Ghosh, S (2012) Environmental exposures, epigenetics and cardiovascular disease. Curr Opin Clin Nutr Metab Care 15: pp. 323 CrossRef
    42. Laukkanen, MO, Mannermaa, S, Hiltunen, MO, Aittom盲ki, S, Airenne, K, J盲nne, J, Yl盲-Herttuala, S (1999) Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arterioscler Thromb Vasc Biol 19: pp. 2171-2178 CrossRef
    43. Hiltunen, MO, Turunen, MP, H盲kkinen, TP, Rutanen, J, Hedman, M, M盲kinen, K, Turunen, AM, Aalto-Setal盲, K, Yl盲-Herttuala, S (2002) DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med 7: pp. 5-11 CrossRef
    44. Yideng, J, Jianzhong, Z, Ying, H, Juan, S, Jinge, Z, Shenglan, W, Xiaoqun, H, Shuren, W (2007) Homocysteine-mediated expression of SAHH, DNMTs, MBD2, and DNA hypomethylation potential pathogenic mechanism in VSMCs. DNA Cell Biol 26: pp. 603-611 CrossRef
    45. Jiang, Y, Sun, T, Xiong, J, Cao, J, Li, G, Wang, S (2007) Hyperhomocysteinemia鈥抦ediated DNA Hypomethylation and its Potential Epigenetic Role in Rats. Acta Biochim Biophys Sin 39: pp. 657-667 CrossRef
    46. Luo, X, Xiao, Y, Song, F, Yang, Y, Xia, M, Ling, W (2012) Increased plasma S-adenosyl-homocysteine levels induce the proliferation and migration of VSMCs through an oxidative stress-ERK1/2 pathway in apoE鈭?鈭抦ice. Cardiovasc Res 95: pp. 241-250 CrossRef
    47. Venkov, CD, Rankin, AB, Vaughan, DE (1996) Identification of Authentic Estrogen Receptor in Cultured Endothelial Cells A Potential Mechanism for Steroid Hormone Regulation of Endothelial Function. Circulation 94: pp. 727-733 CrossRef
    48. Miller, VM, Duckles, SP (2008) Vascular actions of estrogens: functional implications. Pharmacol Rev 60: pp. 210-241 CrossRef
    49. Su, J, Wang, S, Hunag, Y, Jinag, Y (2009) A comparative study on pathogenic effects of homocysteine and cysteine on atherosclerosis. Wei Sheng Yan Jiu 38: pp. 43-46
    50. Jamaluddin, MS, Yang, X, Wang, H (2007) Hyperhomocysteinemia, DNA methylation and vascular disease. Clin Chem Lab Med 45: pp. 1660-1666 CrossRef
    51. Duell, PB, Malinow, MR (1997) Homocysteine: an important risk factor for atherosclerotic vascular disease. Curr Opin Lipidol 8: pp. 28-34 CrossRef
    52. Zhang, J, Liu, J, Li, Z, Wang, L, Jiang, Y, Wang, S (2007) Dysfunction of endothelial NO system originated from homocysteine-induced aberrant methylation pattern in promoter region of DDAH2 gene. Chin Med J Beijing Engl Ed 120: pp. 2132
    53. Jia, SJ, Lai, YQ, Zhao, M, Gong, T, Zhang, B (2013) Homocysteine-induced hypermethylation of DDAH2 promoter contributes to apoptosis of endothelial cells. Die Pharmazie-An Int J Pharm Sci 68: pp. 282-286
    54. Chen, Z, Karaplis, AC, Ackerman, SL, Pogribny, IP, Melnyk, S, Lussier-Cacan, S, Chen, MF, Pai, A, John, S, Smith, RS (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 10: pp. 433 CrossRef
    55. Yi-Deng, J, Tao, S, Hui-Ping, Z, Jian-Tuan, X, Jun, C, Gui-Zhong, L, Shu-Ren, W (2007) Folate and ApoE DNA methylation induced by homocysteine in human monocytes. DNA Cell Biol 26: pp. 737-744 CrossRef
    56. Yideng, J, Zhihong, L, Jiantuan, X, Jun, C, Guizhong, L, Shuren, W (2008) Homocysteine-mediated PPAR伪, 纬 DNA methylation and its potential pathogenic mechanism in monocytes. DNA Cell Biol 27: pp. 143-150 CrossRef
    57. Wang, J, Jiang, Y, Yang, A, Sun, W, Ma, C, Ma, S, Gong, H, Shi, Y, Wei, J (2013) Hyperhomocysteinemia-Induced Monocyte Chemoattractant Protein-1 Promoter DNA Methylation by Nuclear Factor-魏B/DNA Methyltransferase 1 in Apolipoprotein E鈥揇eficient Mice. Bio Res Open Access 2: pp. 118-127 CrossRef
    58. Liang, Y, Yang, X, Ma, L, Cai, X, Wang, L, Yang, C, Li, G, Zhang, M, Sun, W, Jiang, Y (2013) Homocysteine-mediated cholesterol efflux via ABCA1 and ACAT1 DNA methylation in THP-1 monocyte-derived foam cells. Acta Biochim Biophys Sin 45: pp. 220-228 CrossRef
    59. Zaina, S, Lindholm, MW, Lund, G (2005) Nutrition and aberrant DNA methylation patterns in atherosclerosis: more than just hyperhomocysteinemia?. J Nutr 135: pp. 5-8
    60. Sharma, P, Kumar, J, Garg, G, Kumar, A, Patowary, A, Karthikeyan, G, Ramakrishnan, L, Brahmachari, V, Sengupta, S (2008) Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol 27: pp. 357-365 CrossRef
    61. Sharma, P, Senthilkumar, R, Brahmachari, V, Sundaramoorthy, E, Mahajan, A, Sharma, A, Sengupta, S (2006) Mining literature for a comprehensive pathway analysis: a case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids Health Dis 5: pp. 1-19 CrossRef
    62. Ingrosso, D, Perna, AF (2009) Epigenetics in hyperhomocysteinemic states. A special focus on uremia. Biochim Biophys Acta (BBA)-General Subjects 1790: pp. 892-899 CrossRef
    63. Lister, R, Pelizzola, M, Dowen, RH, Hawkins, RD, Hon, G, Tonti-Filippini, J, Nery, JR, Lee, L, Ye, Z, Ngo, QM (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462: pp. 315-322 CrossRef
    64. Kouzarides, T (2007) Chromatin modifications and their function. Cell 128: pp. 693-705 CrossRef
    65. Martin, C, Zhang, Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6: pp. 838-849 CrossRef
    66. Jeppesen, P, Turner, BM (1993) The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: pp. 281-289 CrossRef
    67. Braunstein, M, Rose, A, Holmes, S, Allis, C, Broach, J (1993) Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 7: pp. 592-604 CrossRef
    68. Lachner, M, O鈥機arroll, D, Rea, S, Mechtler, K, Jenuwein, T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: pp. 116-120 CrossRef
    69. Kim, GH, Ryan, JJ, Archer, SL (2013) The role of redox signaling in epigenetics and cardiovascular disease. Antioxid Redox Signal 18: pp. 1920-1936 CrossRef
    70. Findeisen, HM, Kahles, FK, Bruemmer, D (2013) Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis. Curr Atheroscler Rep 15: pp. 1-8 CrossRef
    71. Fernandez, AZ, Siebel, AL, El-Osta, A (2010) Atherogenic factors and their epigenetic relationships. Int J Vasc Med.
    72. Esse, R, Florindo, C, Imbard, A, Rocha, M, de Vriese, A, Smulders, Y, Teerlink, T, Tavares de Almeida, I, Castro, R, Blom, H (2013) Global protein and histone arginine methylation are affected in a tissue-specific manner in a rat model of diet-induced hyperhomocysteinemia. Biochim Biophys Acta (BBA)-Mol Basis Dis 1832: pp. 1708-1714 CrossRef
    73. Esse, R, Imbard, A, Florindo, C, Rocha, M, de Vriese, A, Smulders, Y, Teerlink, T, Tavares de Almeida, I, Castro, R, Blom, H (2014) Protein arginine hypomethylation in a mouse model of cystathionine 尾-synthase deficiency. FASEB J 28: pp. 2686-2695 CrossRef
    74. Jiang, Y, Jiang, J, Xiong, J, Cao, J, Li, N, Li, G, Wang, S (2008) Homocysteine-induced extracellular superoxide dismutase and its epigenetic mechanisms in monocytes. J Exp Biol 211: pp. 911-920 CrossRef
    75. Jin, Y, Amaral, A, McCann, A, Brennan, L (2011) Homocysteine levels impact directly on epigenetic reprogramming in astrocytes. Neurochem Int 58: pp. 833-838 CrossRef
    76. Pizzolo, F, Blom, HJ, Choi, SW, Girelli, D, Guarini, P, Martinelli, N, Stanzial, AM, Corrocher, R, Olivieri, O, Friso, S (2011) Folic acid effects on S-adenosylmethionine, S-adenosylhomocysteine, and DNA methylation in patients with intermediate hyperhomocysteinemia. J Am Coll Nutr 30: pp. 11-18 CrossRef
  • 刊物主题:Lipidology; Medical Biochemistry;
  • 出版者:BioMed Central
  • ISSN:1476-511X
文摘
Atherosclerosis is associated with multiple genetic and modifiable risk factors. There is an increasing body of evidences to indicate that epigenetic mechanisms also play an essential role in atherogenesis by influencing gene expression. Homocysteine is a sulfur-containing amino acid formed during methionine metabolism. Elevated plasma level of homocysteine is generally termed as hyperhomocysteinemia. As a potential risk factor for cardiovascular diseases, hyperhomocysteinemia may initiate or motivate atherogenesis by modification of DNA methylation. The underlying epigenetic mechanism is still unclear with controversial findings. This review focuses on epigenetic involvement and mechanisms of hyperhomocysteinemia in atherogenesis. Considering the potential beneficial effects of anti-homocysteinemia treatments in preventing atherosclerosis, further studies on the role of hyperhomocysteinemia in atherogenesis are warranted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700