From Atiyah Classes to Homotopy Leibniz Algebras
详细信息    查看全文
  • 作者:Zhuo Chen ; Mathieu Stiénon ; Ping Xu
  • 刊名:Communications in Mathematical Physics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:341
  • 期:1
  • 页码:309-349
  • 全文大小:776 KB
  • 参考文献:1.Ammar M., Poncin N.: Coalgebraic approach to the Loday infinity category, stem differential for 2n-ary graded and homotopy algebras. Ann. Inst. Fourier (Grenoble) 60(1), 355–387 (2010)MATH MathSciNet CrossRef
    2.Arinkin, D., Căldăraru, A.: When is the self-intersection of a subvariety a fibration? Adv. Math. 231(2), 815–842 (2012)
    3.Atiyah M.F.: Complex analytic connections in fibre bundles. Trans. Am. Math. Soc. 85, 181–207 (1957)MATH MathSciNet CrossRef
    4.Bar-Natan D., Garoufalidis S., Rozansky L., Thurston D.P.: Wheels, wheeling, and the Kontsevich integral of the unknot. Israel J. Math. 119, 217–237 (2000)MATH MathSciNet CrossRef
    5.Bar-Natan, D., Le, T.T.Q., Thurston, D.P.: Two applications of elementary knot theory to Lie algebras and Vassiliev invariants. Geom. Topol. 7, 1–31 (2003)
    6.Bordemann, M.: (Bi)modules,morphisms, and reduction of star-products: the symplectic case, foliations, and obstructions. Trav. Math. 16, 9–40 (2005)
    7.Bordemann, M.: Atiyah classes and equivariant connections on homogeneous spaces. Trav. Math. 20, 29–82 (2012)
    8.Bott, R.: Lectures on characteristic classes and foliations, Lectures on algebraic and differential topology (Second Latin American School in Math., Mexico City, 1971), Springer, Berlin, Notes by Lawrence Conlon, with two appendices by J. Stasheff, pp. 1–94. Lecture Notes in Math., Vol. 279, (1972)
    9.Calaque D.: A PBW theorem for inclusions of (sheaves of) Lie algebroids. Rend. Semin. Mat. Univ. Padova 131, 23–47 (2014)MATH MathSciNet CrossRef
    10.Calaque D., Căldăraru A., Tu J.: PBW for an inclusion of Lie algebras. J. Algebra 378, 64–79 (2013)MATH MathSciNet CrossRef
    11.Calaque, D., Rossi, C.A.: Lectures on Duflo isomorphisms in Lie algebra and complex geometry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich (2011)
    12.Calaque D., Van den Bergh M.: Hochschild cohomology and Atiyah classes. Adv. Math. 224(5), 1839–1889 (2010)MATH MathSciNet CrossRef
    13.Chen Z., Stiénon M., Xu P.: A Hopf algebra associated with a Lie pair. C. R. Math. Acad. Sci. Paris 352(11), 929–933 (2014)MATH MathSciNet CrossRef
    14.Costello, K.: A geometric construction of the Witten genus, I. In: Proceedings of the international congress of mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 942–959
    15.Costello, K.: A geometric construction of the Witten genus, II. arXiv:​1112.​0816 (2011)
    16.Căldăraru A., Willerton S.: The Mukai pairing. I. A categorical approach. N Y J. Math. 16, 61–98 (2010)MATH
    17.Dolgushev, V., Tamarkin, D., Tsygan, B.: Formality of the homotopy calculus algebra of hochschild (co)chains. arXiv:​0807.​5117 (2008)
    18.Dolgushev V., Tamarkin D., Tsygan B.: Formality theorems for Hochschild complexes and their applications. Lett. Math. Phys. 90(1–3), 103–136 (2009)MATH MathSciNet CrossRef
    19.Grinberg, D.: Poincaré–Birkhoff–Witt type results for inclusions of Lie algebras. Master’s thesis, Massachusetts Institute of Technology. Boston, MA (2011)
    20.Higgins P.J., Mackenzie K.C.H.: Algebraic constructions in the category of Lie algebroids. J. Algebra 129(1), 194–230 (1990)MATH MathSciNet CrossRef
    21.Hübschmann J.: Poisson cohomology and quantization. J. Reine Angew. Math. 408, 57–113 (1990)MATH MathSciNet
    22.Joyal A., Street R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993)MATH MathSciNet CrossRef
    23.Kapranov M.: Rozansky–Witten invariants via Atiyah classes. Compos. Math. 115(1), 71–113 (1999)MATH MathSciNet CrossRef
    24.Kontsevich, M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48(1), 35–72 (1999), Moshé Flato (1937–1998)
    25.Kontsevich M.: Rozansky–Witten invariants via formal geometry. Compos. Math. 115(1), 115–127 (1999)MATH MathSciNet CrossRef
    26.Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)MATH MathSciNet CrossRef
    27.Lada, T.: L ∞ algebra representations. Appl. Categ. Struct. 12(1), 29–34 (2004)
    28.Lada T., Markl M.: Strongly homotopy Lie algebras. Commun. Algebra 23(6), 2147–2161 (1995)MATH MathSciNet CrossRef
    29.Lada T., Stasheff J.: Introduction to SH Lie algebras for physicists. Int. J. Theor. Phys. 32(7), 1087–1103 (1993)MATH MathSciNet CrossRef
    30.Laurent-Gengoux, C., Stiénon, M., Xu, P.: Holomorphic poisson manifolds and holomorphic Lie algebroids. Int. Math. Res. Not. IMRN (2008), Art. ID rnn 088, 46
    31.Laurent-Gengoux C., Stiénon M., Xu P.: Exponential map and L ∞ algebra associated to a Lie pair. C. R. Math. Acad. Sci. Paris 350(17–18), 817–821 (2012)MATH MathSciNet CrossRef
    32.Laurent-Gengoux, C., Stiénon, M., Xu, P.: Poincaré–Birkhoff–Witt isomorphisms and Kapranov dg-manifolds. arXiv:​1408.​2903 (2014)
    33.Laurent-Gengoux, C., Voglaire, Y.: Invariant connections and PBW theorem for Lie groupoid pairs. arXiv:​1507.​01051 (2015)
    34.Loday J.-L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. (2) 39(3–4), 269–293 (1993)MATH MathSciNet
    35.Lu J.-H.: Poisson homogeneous spaces and Lie algebroids associated to Poisson actions. Duke Math. J. 86(2), 261–304 (1997)MATH MathSciNet CrossRef
    36.Mackenzie K.C.H., Mokri T.: Locally vacant double Lie groupoids and the integration of matched pairs of Lie algebroids. Geom. Dedicata 77(3), 317–330 (1999)MATH MathSciNet CrossRef
    37.Mackenzie K.C.H., Xu P.: Classical lifting processes and multiplicative vector fields. Q. J. Math. Oxf. Ser. (2) 49(193), 59–85 (1998)MATH MathSciNet CrossRef
    38.Markarian N.: The Atiyah class, Hochschild cohomology and the Riemann–Roch theorem. J. Lond. Math. Soc. (2) 79(1), 129–143 (2009)MATH MathSciNet CrossRef
    39.Mehta R.A., Stiénon M., Xu P.: The Atiyah class of a dg-vector bundle. C. R. Math. Acad. Sci. Paris 353(4), 357–362 (2015)MATH MathSciNet CrossRef
    40.Mokri T.: Matched pairs of Lie algebroids. Glasgow Math. J. 39(2), 167–181 (1997)MATH MathSciNet CrossRef
    41.Molino P.: Classe d’Atiyah d’un feuilletage et connexions transverses projetables. C. R. Acad. Sci. Paris Sér. A-B 272, A779–A781 (1971)MathSciNet
    42.Molino P.: Propriétés cohomologiques et propriétés topologiques des feuilletages à à connexion transverse projetable. Topology 12, 317–325 (1973)MATH MathSciNet CrossRef
    43.Ramadoss A.C.: The big Chern classes and the Chern character. Int. J. Math. 19(6), 699–746 (2008)MATH MathSciNet CrossRef
    44.Rinehart G.S.: Differential forms on general commutative algebras. Trans. Am. Math. Soc. 108, 195–222 (1963)MATH MathSciNet CrossRef
    45.Roberts J., Willerton S.: On the Rozansky–Witten weight systems. Algebr. Geom. Topol. 10(3), 1455–1519 (2010)MATH MathSciNet CrossRef
    46.Rozansky L., Witten E.: Hyper–Kähler geometry and invariants of three-manifolds. Selecta Math. (N.S.) 3(3), 401–458 (1997)MATH MathSciNet CrossRef
    47.Shoikhet, B.: On the Duflo formula for L ∞-algebras and Q-manifolds. arXiv:​math/​9812009 (1998)
    48.Stasheff J.: Constrained Poisson algebras and strong homotopy representations. Bull. Am. Math. Soc. (N.S.) 19(1), 287–290 (1988)MATH MathSciNet CrossRef
    49.Uchino K.: Derived brackets and sh Leibniz algebras. J. Pure Appl. Algebra 215(5), 1102–1111 (2011)MATH MathSciNet CrossRef
    50.Vaisman I.: Remarks about differential operators on foliate manifolds. An. Şti. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. (N.S.) 20(2), 327–350 (1974)MATH MathSciNet
    51.Vitagliano, L.: On the strong homotopy Lie–Rinehart algebra of a foliation. Commun. Contemp. Math. 16(6), 1450007, 49 (2014)
    52.Vitagliano, L.: On the strong homotopy associative algebra of a foliation. Commun. Contemp. Math. 17(2), 1450026, 34 (2015)
    53.Vitagliano L.: Representations of homotopy Lie–Rinehart algebras. Math. Proc. Camb. Philos. Soc. 158(1), 155–191 (2015)MathSciNet CrossRef
    54.Voglaire Y., Xu P.: Rozansky–Witten-type invariants from symplectic Lie pairs. Commun. Math. Phys. 336(1), 217–241 (2015)MATH MathSciNet CrossRef
    55.Xu P.: Quantum groupoids. Commun. Math. Phys. 216(3), 539–581 (2001)MATH CrossRef
    56.Yu, S.: Dolbeault dga of formal neighborhoods and L ∞ algebroids, PhD thesis, Penn State University. State College, PA (2013)
  • 作者单位:Zhuo Chen (1)
    Mathieu Stiénon (2)
    Ping Xu (2)

    1. Department of Mathematics, Tsinghua University, Beijing, China
    2. Department of Mathematics, Pennsylvania State University, University Park, PA, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Quantum Physics
    Quantum Computing, Information and Physics
    Complexity
    Statistical Physics
    Relativity and Cosmology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0916
文摘
A celebrated theorem of Kapranov states that the Atiyah class of the tangent bundle of a complex manifold X makes T X [−1] into a Lie algebra object in D + (X), the bounded below derived category of coherent sheaves on X. Furthermore, Kapranov proved that, for a Kähler manifold X, the Dolbeault resolution \({\Omega^{\bullet-1}(T_X^{1, 0})}\) of T X [−1] is an L algebra. In this paper, we prove that Kapranov’s theorem holds in much wider generality for vector bundles over Lie pairs. Given a Lie pair (L, A), i.e. a Lie algebroid L together with a Lie subalgebroid A, we define the Atiyah class α E of an A-module E as the obstruction to the existence of an A-compatible L-connection on E. We prove that the Atiyah classes α L/A and α E respectively make L/A[−1] and E[−1] into a Lie algebra and a Lie algebra module in the bounded below derived category \({D^+(\mathcal{A})}\) , where \({\mathcal{A}}\) is the abelian category of left \({\mathcal{U}(A)}\) -modules and \({\mathcal{U}(A)}\) is the universal enveloping algebra of A. Moreover, we produce a homotopy Leibniz algebra and a homotopy Leibniz module stemming from the Atiyah classes of L/A and E, and inducing the aforesaid Lie structures in \({D^+(\mathcal{A})}\) . Research partially supported by NSFC Grant 11471179, the Beijing high education young elite teacher project, NSA Grant H98230-12-1-0234, and NSF Grants DMS0605725, DMS0801129, DMS1101827.Communicated by N. Reshetikhin

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700