Multisymplectic method for the Camassa-Holm equation
详细信息    查看全文
  • 作者:Yu Zhang ; Zi-Chen Deng ; Wei-Peng Hu
  • 关键词:35Q51 ; 37K10 ; 65P10 ; multisymplectic method ; Camassa ; Holm equation ; conservation law ; peaked wave solution
  • 刊名:Advances in Difference Equations
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:2016
  • 期:1
  • 全文大小:1,624 KB
  • 参考文献:1. Holm, DD, Staley, MF: Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a \(1+1\) nonlinear evolutionary PDE. Phys. Lett. A 308, 437-444 (2003) MATH MathSciNet CrossRef
    2. Camassa, R, Holm, DD: An integrable shallow-water equation with peaked solitons. Phys. Rev. Lett. 71, 1661-1664 (1993) MATH MathSciNet CrossRef
    3. Constantin, A: On the scattering problem for the Camassa-Holm equation. Proc. R. Soc. Lond. A 457, 953-970 (2001) MATH MathSciNet CrossRef
    4. Fisher, M, Schiff, J: The Camassa Holm equation: conserved quantities and the initial value problem. Phys. Lett. A 259, 371-376 (1999) MATH MathSciNet CrossRef
    5. Degasperis, A, Holm, DD, Hone, ANW: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1463-1474 (2002) MathSciNet CrossRef
    6. Lundmark, HJ: Formation and dynamics of shock waves in the Degasperis-Procesi equation. J. Nonlinear Sci. 17, 169-198 (2007) MATH MathSciNet CrossRef
    7. Coclite, GM, Karlsen, KH, Risebro, NH: Numerical schemes for computing discontinuous solutions of the Degasperis-Procesi equation. IMA J. Numer. Anal. 28, 80-105 (2008) MATH MathSciNet CrossRef
    8. Coclite, GM, Gargano, F, Sciacca, V: Analytic solutions and singularity formation for the peakon b-family equations. Acta Appl. Math. 122, 419-434 (2012) MATH MathSciNet
    9. Coclite, GM, Karlsen, KH, Risebro, NH: A convergent finite difference scheme for the Camassa-Holm equation with general \(H^{1}\) initial data. SIAM J. Numer. Anal. 46, 1554-1579 (2008) MATH MathSciNet CrossRef
    10. Coclite, GM, Karlsen, KH, Risebro, NH: An explicit finite difference scheme for the Camassa-Holm equation. Adv. Differ. Equ. 13, 681-732 (2008) MATH MathSciNet
    11. Xu, Y, Shu, CW: A local discontinuous Galerkin method for the Camassa-Holm equation. SIAM J. Numer. Anal. 46, 1998-2021 (2008) MATH MathSciNet CrossRef
    12. Matsuo, T: A Hamiltonian-conserving Galerkin scheme for the Camassa-Holm equation. J. Comput. Appl. Math. 234, 1258-1266 (2010) MATH MathSciNet CrossRef
    13. Kalisch, H, Lenells, J: Numerical study of traveling-wave solutions for the Camassa-Holm equation. Chaos Solitons Fractals 25, 287-298 (2005) MATH MathSciNet CrossRef
    14. Kalisch, H, Raynaud, X: Convergence of a spectral projection of the Camassa-Holm equation. Numer. Methods Partial Differ. Equ. 22, 1197-1215 (2006) MATH MathSciNet CrossRef
    15. Cohen, D, Owren, B, Raynaud, X: Multi-symplectic integration of the Camassa-Holm equation. J. Comput. Phys. 227, 5492-5512 (2008) MATH MathSciNet CrossRef
    16. Zhu, HJ, Song, SH, Tang, YF: Multi-symplectic wavelet collocation method for the nonlinear Schrödinger equation and the Camassa-Holm equation. Comput. Phys. Commun. 182, 616-627 (2011) MATH MathSciNet CrossRef
    17. Bridges, TJ: Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc. 121, 147-190 (1997) MATH MathSciNet CrossRef
    18. Reich, S: Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473-499 (2000) MATH MathSciNet CrossRef
    19. Bridges, TJ, Reich, S: Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A 284, 184-193 (2001) MATH MathSciNet CrossRef
    20. Wang, YS, Wang, B: High-order multi-symplectic schemes for the nonlinear Klein-Gordon equation. Appl. Math. Comput. 166, 608-632 (2005) MATH MathSciNet CrossRef
    21. Li, HC, Sun, JQ, Qin, MZ: New explicit multi-symplectic scheme for nonlinear wave equation. Appl. Math. Mech. 35, 369-380 (2014) MATH MathSciNet CrossRef
    22. Hong, JL, Jiang, SS, Li, C: Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations. J. Comput. Phys. 228, 3517-3532 (2009) MathSciNet CrossRef
    23. Hong, JL, Kong, LH: Novel multi-symplectic integrators for nonlinear fourth-order Schrödinger equation with trapped term. Commun. Comput. Phys. 7, 613-630 (2010) MathSciNet
    24. Qian, X, Chen, YM, Gao, E, Song, SH: Multi-symplectic wavelet splitting method for the strongly coupled Schrödinger system. Chin. Phys. B 21, 120202 (2012) CrossRef
    25. Lv, ZQ, Wang, YS, Song, YZ: A new multi-symplectic integration method for the nonlinear Schrödinger equation. Chin. Phys. Lett. 30, 030201 (2013) CrossRef
    26. Zhao, PF, Qin, MZ: Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation. J. Phys. A, Math. Gen. 33, 3613-3626 (2000) MATH MathSciNet CrossRef
    27. Wang, YS, Wang, B, Chen, X: Multisymplectic Euler box scheme for the KdV equation. Chin. Phys. Lett. 24, 312-314 (2007) CrossRef
    28. Hu, WP, Deng, ZC: Multi-symplectic method for generalized fifth-order KdV equation. Chin. Phys. B 17, 3923-3929 (2008) CrossRef
    29. Zeng, WP, Huang, LY, Qin, MZ: The multi symplectic algorithm for ‘good’ Boussinesq equation. Appl. Math. Mech. 23, 835-841 (2002) MATH MathSciNet CrossRef
    30. Hu, WP, Deng, ZC: Multi-symplectic method for generalized Boussinesq equation. Appl. Math. Mech. 29, 927-932 (2008) MATH MathSciNet CrossRef
    31. Kong, LH, Hong, JL, Zhang, JJ: Splitting multisymplectic integrators for Maxwell’s equations. J. Comput. Phys. 229, 4259-4278 (2010) MATH MathSciNet CrossRef
    32. Cai, WJ, Wang, YS, Song, YZ: Numerical dispersion analysis of a multi-symplectic scheme for the three dimensional Maxwell’s equations. J. Comput. Phys. 234, 330-352 (2013) MATH MathSciNet CrossRef
    33. Hong, JL, Ji, LH, Zhang, LY: A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise. J. Comput. Phys. 268, 255-268 (2014) MathSciNet CrossRef
    34. Hu, WP, Deng, ZC, Zhang, Y: Multi-symplectic method for peakon-antipeakon collision of quasi-Degasperis-Procesi equation. Comput. Phys. Commun. 185, 2020-2028 (2014) MathSciNet CrossRef
    35. Cai, WJ, Wang, YS: A new explicit multisymplectic integrator for the Kawahara-type equation. Chin. Phys. B 23, 030204 (2014) MathSciNet CrossRef
    36. Moore, B, Reich, S: Backward error analysis for multi-symplectic integration methods. Numer. Math. 95, 625-652 (2003) MATH MathSciNet CrossRef
    37. Liu, Y, Yin, ZY: Global existence and blow-up phenomena for the Degasperis-Procesi equation. Commun. Math. Phys. 267, 801-820 (2006) MATH MathSciNet CrossRef
  • 作者单位:Yu Zhang (1)
    Zi-Chen Deng (1)
    Wei-Peng Hu (1)

    1. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an, Shannxi, 710072, P.R. China
  • 刊物主题:Difference and Functional Equations; Mathematics, general; Analysis; Functional Analysis; Ordinary Differential Equations; Partial Differential Equations;
  • 出版者:Springer International Publishing
  • ISSN:1687-1847
文摘
The Camassa-Holm equation, a completely integrable evolution equation, contains rich geometric structures. For the existence of the bi-Hamiltonian structure and the so-called peaked wave solutions, considerable interest has been aroused in the last several decades. Focusing on local geometric properties of the peaked wave solutions for the Camassa-Holm equation, we propose the multisymplectic method to simulate the propagation of the peaked wave in this paper. Based on the multisymplectic theory, we present a multisymplectic formulation of the Camassa-Holm equation and the multisymplectic conservation law. Then, we apply the Euler box scheme to construct the structure-preserving scheme of the multisymplectic form. Numerical results show the merits of the multisymplectic scheme constructed, especially the local conservative properties on the wave form in the propagation process. Keywords multisymplectic method Camassa-Holm equation conservation law peaked wave solution

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700