Transforming growth factor β1-induced astrocyte migration is mediated in part by activating 5-lipoxygenase and cysteinyl leukotriene receptor 1
详细信息    查看全文
  • 作者:Xue-Qin Huang (1)
    Xia-Yan Zhang (1)
    Xiao-Rong Wang (1)
    Shu-Ying Yu (1)
    San-Hua Fang (1)
    Yun-Bi Lu (1)
    Wei-Ping Zhang (1)
    Er-Qing Wei (1)
  • 关键词:Transforming growth factor ; β1 ; Cysteinyl leukotriene ; Cysteinyl leukotriene receptor ; 5 ; lipoxygenase ; Astrocyte ; migration ; Glial scar
  • 刊名:Journal of Neuroinflammation
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:9
  • 期:1
  • 全文大小:1541KB
  • 参考文献:1. Fawcett JW, Asher RA: The glial scar and central nervous system repair. / Brain Res Bull 1999, 49:377-91. CrossRef
    2. Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS: Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. / J Cell Sci 2005, 118:5691-698. CrossRef
    3. Faber-Elman A, Lavie V, Schvartz I, Shaltiel S, Schwartz M: Vitronectin overrides a negative effect of TNF-alpha on astrocyte migration. / FASEB J 1995, 9:1605-613.
    4. Striedinger K, Scemes E: Interleukin-1beta affects calcium signaling and in vitro cell migration of astrocyte progenitors. / J Neuroimmunol 2008, 196:116-23. CrossRef
    5. Miao H, Crabb AW, Hernandez MR, Lukas TJ: Modulation of factors affecting optic nerve head astrocyte migration. / Invest Ophthalmol Vis Sci 2010, 51:4096-103. CrossRef
    6. Hsieh HL, Wang HH, Wu WB, Chu PJ, Yang CM: Transforming growth factor-beta1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK- and JNK-NF-kappaB pathways. / J Neuroinflammation 2010, 7:88. CrossRef
    7. Flanders KC, Ren RF, Lippa CF: Transforming growth factor-betas in neurodegenerative disease. / Prog Neurobiol 1998, 54:71-5. CrossRef
    8. Unsicker K, Strelau J: Functions of transforming growth factor-beta isoforms in the nervous system. Cues based on localization and experimental in vitro and in vivo evidence. / Eur J Biochem 2000, 267:6972-975. CrossRef
    9. Bottner M, Krieglstein K, Unsicker K: The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. / J Neurochem 2000, 75:2227-240. CrossRef
    10. Massague J: How cells read TGF-beta signals. / Nat Rev Mol Cell Biol 2000, 1:169-78. CrossRef
    11. Vivien D, Ali C: Transforming growth factor-beta signalling in brain disorders. / Cytokine Growth Factor Rev 2006, 17:121-28. CrossRef
    12. Leivonen SK, Kahari VM: Transforming growth factor-beta signaling in cancer invasion and metastasis. / Int J Cancer 2007, 121:2119-124. CrossRef
    13. Pratt BM, McPherson JM: TGF-beta in the central nervous system: potential roles in ischemic injury and neurodegenerative diseases. / Cytokine Growth Factor Rev 1997, 8:267-92. CrossRef
    14. Lehrmann E, Kiefer R, Christensen T, Toyka KV, Zimmer J, Diemer NH, Hartung HP, Finsen B: Microglia and macrophages are major sources of locally produced transforming growth factor-beta1 after transient middle cerebral artery occlusion in rats. / Glia 1998, 24:437-48. CrossRef
    15. Ruocco A, Nicole O, Docagne F, Ali C, Chazalviel L, Komesli S, Yablonsky F, Roussel S, MacKenzie ET, Vivien D, Buisson A: A transforming growth factor-beta antagonist unmasks the neuroprotective role of this endogenous cytokine in excitotoxic and ischemic brain injury. / J Cereb Blood Flow Metab 1999, 19:1345-353. CrossRef
    16. Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN: Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. / Science 1987, 237:1171-176. CrossRef
    17. Kanaoka Y, Boyce JA: Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses. / J Immunol 2004, 173:1503-510.
    18. Wenzel SE: The role of leukotrienes in asthma. / Prostaglandins Leukot Essent Fatty Acids 2003, 69:145-55. CrossRef
    19. Vannella KM, McMillan TR, Charbeneau RP, Wilke CA, Thomas PE, Toews GB, Peters-Golden M, Moore BB: Cysteinyl leukotrienes are autocrine and paracrine regulators of fibrocyte function. / J Immunol 2007, 179:7883-890.
    20. Brink C, Dahlen SE, Drazen J, Evans JF, Hay DW, Nicosia S, Serhan CN, Shimizu T, Yokomizo T: International union of pharmacology XXXVII. Nomenclature for leukotriene and lipoxin receptors. / Pharmacol Rev 2003, 55:195-27. CrossRef
    21. Rovati GE, Capra V: Cysteinyl-leukotriene receptors and cellular signals. / Scientific World Journal 2007, 7:1375-392. CrossRef
    22. Fang SH, Zhou Y, Chu LS, Zhang WP, Wang ML, Yu GL, Peng F, Wei EQ: Spatio-temporal expression of cysteinyl leukotriene receptor-2 mRNA in rat brain after focal cerebral ischemia. / Neurosci Lett 2007, 412:78-3. CrossRef
    23. Zhang YJ, Zhang L, Ye YL, Fang SH, Zhou Y, Zhang WP, Lu YB, Wei EQ: Cysteinyl leukotriene receptors CysLT1 and CysLT2 are upregulated in acute neuronal injury after focal cerebral ischemia in mice. / Acta Pharmacol Sin 2006, 27:1553-560. CrossRef
    24. Zhou Y, Wei EQ, Fang SH, Chu LS, Wang ML, Zhang WP, Yu GL, Ye YL, Lin SC, Chen Z: Spatio-temporal properties of 5-lipoxygenase expression and activation in the brain after focal cerebral ischemia in rats. / Life Sci 2006, 79:1645-656. CrossRef
    25. Fang SH, Wei EQ, Zhou Y, Wang ML, Zhang WP, Yu GL, Chu LS, Chen Z: Increased expression of cysteinyl leukotriene receptor-1 in the brain mediates neuronal damage and astrogliosis after focal cerebral ischemia in rats. / Neuroscience 2006, 140:969-79. CrossRef
    26. Zhao CZ, Zhao B, Zhang XY, Huang XQ, Shi WZ, Liu HL, Fang SH, Lu YB, Zhang WP, Tang FD, Wei EQ: Cysteinyl leukotriene receptor 2 is spatiotemporally involved in neuron injury, astrocytosis and microgliosis after focal cerebral ischemia in rats. / Neuroscience 2011, 189:1-1. CrossRef
    27. Yu GL, Wei EQ, Zhang SH, Xu HM, Chu LS, Zhang WP, Zhang Q, Chen Z, Mei RH, Zhao MH: Montelukast, a cysteinyl leukotriene receptor-1 antagonist, dose- and time-dependently protects against focal cerebral ischemia in mice. / Pharmacology 2005, 73:31-0. CrossRef
    28. Yu GL, Wei EQ, Wang ML, Zhang WP, Zhang SH, Weng JQ, Chu LS, Fang SH, Zhou Y, Chen Z, Zhang Q, Zhang LH: Pranlukast, a cysteinyl leukotriene receptor-1 antagonist, protects against chronic ischemic brain injury and inhibits the glial scar formation in mice. / Brain Res 2005, 1053:116-25. CrossRef
    29. Ciccarelli R, D’Alimonte I, Santavenere C, D’Auro M, Ballerini P, Nargi E, Buccella S, Nicosia S, Folco G, Caciagli F, Di Iorio P: Cysteinyl-leukotrienes are released from astrocytes and increase astrocyte proliferation and glial fibrillary acidic protein via cys-LT1 receptors and mitogen-activated protein kinase pathway. / Eur J Neurosci 2004, 20:1514-524. CrossRef
    30. Huang XJ, Zhang WP, Li CT, Shi WZ, Fang SH, Lu YB, Chen Z, Wei EQ: Activation of CysLT receptors induces astrocyte proliferation and death after oxygen-glucose deprivation. / Glia 2008, 56:27-7. CrossRef
    31. Woszczek G, Chen LY, Nagineni S, Kern S, Barb J, Munson PJ, Logun C, Danner RL, Shelhamer JH: Leukotriene D(4) induces gene expression in human monocytes through cysteinyl leukotriene type I receptor. / J Allergy Clin Immunol 2008, 121:215-21. e211 CrossRef
    32. Thivierge M, Stankova J, Rola-Pleszczynski M: Toll-like receptor agonists differentially regulate cysteinyl-leukotriene receptor 1 expression and function in human dendritic cells. / J Allergy Clin Immunol 2006, 117:1155-162. CrossRef
    33. Thivierge M, Stankova J, Rola-Pleszczynski M: Cysteinyl-leukotriene receptor type 1 expression and function is down-regulated during monocyte-derived dendritic cell maturation with zymosan: involvement of IL-10 and prostaglandins. / J Immunol 2009, 183:6778-787. CrossRef
    34. Kaetsu Y, Yamamoto Y, Sugihara S, Matsuura T, Igawa G, Matsubara K, Igawa O, Shigemasa C, Hisatome I: Role of cysteinyl leukotrienes in the proliferation and the migration of murine vascular smooth muscle cells in vivo and in vitro. / Cardiovasc Res 2007, 76:160-66. CrossRef
    35. Paruchuri S, Broom O, Dib K, Sjolander A: The pro-inflammatory mediator leukotriene D4 induces phosphatidylinositol 3-kinase and Rac-dependent migration of intestinal epithelial cells. / J Biol Chem 2005, 280:13538-3544. CrossRef
    36. Yuan YM, Fang SH, Qian XD, Liu LY, Xu LH, Shi WZ, Zhang LH, Lu YB, Zhang WP, Wei EQ: Leukotriene D4 stimulates the migration but not proliferation of endothelial cells mediated by the cysteinyl leukotriene cyslt(1) receptor via the extracellular signal-regulated kinase pathway. / J Pharmacol Sci 2009, 109:285-92. CrossRef
    37. Espinosa K, Bosse Y, Stankova J, Rola-Pleszczynski M: CysLT1 receptor upregulation by TGF-beta and IL-13 is associated with bronchial smooth muscle cell proliferation in response to LTD4. / J Allergy Clin Immunol 2003, 111:1032-040. CrossRef
    38. Asakura T, Ishii Y, Chibana K, Fukuda T: Leukotriene D4 stimulates collagen production from myofibroblasts transformed by TGF-beta. / J Allergy Clin Immunol 2004, 114:310-15. CrossRef
    39. Paiva LA, Maya-Monteiro CM, Bandeira-Melo C, Silva PM, El-Cheikh MC, Teodoro AJ, Borojevic R, Perez SA, Bozza PT: Interplay of cysteinyl leukotrienes and TGF-beta in the activation of hepatic stellate cells from Schistosoma mansoni granulomas. / Biochim Biophys Acta 2010, 1801:1341-348. CrossRef
    40. Qi LL, Fang SH, Shi WZ, Huang XQ, Zhang XY, Lu YB, Zhang WP, Wei EQ: CysLT2 receptor-mediated AQP4 up-regulation is involved in ischemic-like injury through activation of ERK and p38 MAPK in rat astrocytes. / Life Sci 2011, 88:50-6. CrossRef
    41. Deleyrolle LP, Harding A, Cato K, Siebzehnrubl FA, Rahman M, Azari H, Olson S, Gabrielli B, Osborne G, Vescovi A, Reynolds BA: Evidence for label-retaining tumour-initiating cells in human glioblastoma. / Brain 2011, 134:1331-343. CrossRef
    42. Quah BJ, Parish CR: New and improved methods for measuring lymphocyte proliferation in vitro and in vivo using CFSE-like fluorescent dyes. / J Immunol Methods 2012, 379:1-4. CrossRef
    43. Bogie JF, Stinissen P, Hellings N, Hendriks JJ: Myelin-phagocytosing macrophages modulate autoreactive T cell proliferation. / J Neuroinflammation 2011, 8:85. CrossRef
    44. Luo JY, Zhang Z, Yu SY, Zhao B, Zhao CZ, Wang XX, Fang SH, Zhang WP, Zhang LH, Wei EQ, Lu YB: Rotenone-induced changes of cysteinyl leukotriene receptor 1 expression in BV2 microglial cells. / Zhejiang Da Xue Xue Bao Yi Xue Ban 2011, 40:131-38.
    45. Zhang LP, Zhao CZ, Shi WZ, Qi LL, Lu YB, Zhang YM, Zhang LH, Fang SH, Bao JF, Shen JG, Wei EQ: Preparation and identification of polyclonal antibody against cysteinyl leukotriene receptor 2. / Zhejiang Da Xue Xue Bao Yi Xue Ban 2009, 38:591-97.
    46. Yan D, Stocco R, Sawyer N, Nesheim ME, Abramovitz M, Funk CD: Differential signaling of cysteinyl leukotrienes and a novel cysteinyl leukotriene receptor 2 (CysLT) agonist, N-methyl-leukotriene C, in calcium reporter and beta arrestin assays. / Mol Pharmacol 2011, 79:270-78. CrossRef
    47. Stipursky J, Gomes FC: TGF-beta1/SMAD signaling induces astrocyte fate commitment in vitro: implications for radial glia development. / Glia 2007, 55:1023-033. CrossRef
    48. Schachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK, Degen JL, Margolis RU, Akassoglou K: Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage. / J Neurosci 2010, 30:5843-854. CrossRef
    49. Lindholm D, Castren E, Kiefer R, Zafra F, Thoenen H: Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. / J Cell Biol 1992, 117:395-00. CrossRef
    50. Klaver CL, Caplan MR: Bioactive surface for neural electrodes: decreasing astrocyte proliferation via transforming growth factor-beta1. / J Biomed Mater Res A 2007, 81:1011-016.
    51. Ge QF, Wei EQ, Zhang WP, Hu X, Huang XJ, Zhang L, Song Y, Ma ZQ, Chen Z, Luo JH: Activation of 5-lipoxygenase after oxygen-glucose deprivation is partly mediated via NMDA receptor in rat cortical neurons. / J Neurochem 2006, 97:992-004. CrossRef
    52. Li CT, Zhang WP, Lu YB, Fang SH, Yuan YM, Qi LL, Zhang LH, Huang XJ, Zhang L, Chen Z, Wei EQ: Oxygen-glucose deprivation activates 5-lipoxygenase mediated by oxidative stress through the p38 mitogen-activated protein kinase pathway in PC12 cells. / J Neurosci Res 2009, 87:991-001. CrossRef
    53. Song Y, Wei EQ, Zhang WP, Ge QF, Liu JR, Wang ML, Huang XJ, Hu X, Chen Z: Minocycline protects PC12 cells against NMDA-induced injury via inhibiting 5-lipoxygenase activation. / Brain Res 2006, 1085:57-7. CrossRef
    54. Steinhilber D, Radmark O, Samuelsson B: Transforming growth factor beta upregulates 5-lipoxygenase activity during myeloid cell maturation. / Proc Natl Acad Sci USA 1993, 90:5984-988. CrossRef
    55. Brungs M, Radmark O, Samuelsson B, Steinhilber D: On the induction of 5-lipoxygenase expression and activity in HL-60 cells: effects of vitamin D3, retinoic acid, DMSO and TGF beta. / Biochem Biophys Res Commun 1994, 205:1572-580. CrossRef
    56. Brungs M, Radmark O, Samuelsson B, Steinhilber D: Sequential induction of 5-lipoxygenase gene expression and activity in Mono Mac 6 cells by transforming growth factor beta and 1,25-dihydroxyvitamin D3. / Proc Natl Acad Sci USA 1995, 92:107-11. CrossRef
    57. Harle D, Radmark O, Samuelsson B, Steinhilber D: Calcitriol and transforming growth factor-beta upregulate 5-lipoxygenase mRNA expression by increasing gene transcription and mRNA maturation. / Eur J Biochem 1998, 254:275-81. CrossRef
    58. Seuter S, Sorg BL, Steinhilber D: The coding sequence mediates induction of 5-lipoxygenase expression by Smads3/4. / Biochem Biophys Res Commun 2006, 348:1403-410. CrossRef
    59. Ni NC, Yan D, Ballantyne LL, Barajas-Espinosa A, St Amand T, Pratt DA, Funk CD: A selective cysteinyl leukotriene receptor 2 antagonist blocks myocardial ischemia/reperfusion injury and vascular permeability in mice. / J Pharmacol Exp Ther 2011, 339:768-78. CrossRef
    60. Carnini C, Accomazzo MR, Borroni E, Vitellaro-Zuccarello L, Durand T, Folco G, Rovati GE, Capra V, Sala A: Synthesis of cysteinyl leukotrienes in human endothelial cells: subcellular localization and autocrine signaling through the CysLT2 receptor. / FASEB J 2011, 25:3519-528. CrossRef
    61. Bosse Y, Thompson C, McMahon S, Dubois CM, Stankova J, Rola-Pleszczynski M: Leukotriene D4-induced, epithelial cell-derived transforming growth factor beta1 in human bronchial smooth muscle cell proliferation. / Clin Exp Allergy 2008, 38:113-21.
    62. Perng DW, Wu YC, Chang KT, Wu MT, Chiou YC, Su KC, Perng RP, Lee YC: Leukotriene C4 induces TGF-beta1 production in airway epithelium via p38 kinase pathway. / Am J Respir Cell Mol Biol 2006, 34:101-07. CrossRef
    63. Eap R, Jacques E, Semlali A, Plante S, Chakir J: Cysteinyl leukotrienes regulate TGF-beta(1) and collagen production by bronchial fibroblasts obtained from asthmatic subjects. / Prostaglandins Leukot Essent Fatty Acids 2012, 86:127-33. CrossRef
    64. Yamashita K, Gerken U, Vogel P, Hossmann K, Wiessner C: Biphasic expression of TGF-beta1 mRNA in the rat brain following permanent occlusion of the middle cerebral artery. / Brain Res 1999, 836:139-45. CrossRef
    65. Doyle KP, Cekanaviciute E, Mamer LE, Buckwalter MS: TGFbeta signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. / J Neuroinflammation 2010, 7:62. CrossRef
    66. Kohta M, Kohmura E, Yamashita T: Inhibition of TGF-beta1 promotes functional recovery after spinal cord injury. / Neurosci Res 2009, 65:393-01. CrossRef
    67. Massague J, Wotton D: Transcriptional control by the TGF-beta/Smad signaling system. / EMBO J 2000, 19:1745-754. CrossRef
    68. Kloos DU, Choi C, Wingender E: The TGF-beta–Smad network: introducing bioinformatic tools. / Trends Genet 2002, 18:96-03. CrossRef
    69. Wang H, Yang GH, Bu H, Zhou Q, Guo LX, Wang SL, Ye L: Systematic analysis of the TGF-beta/Smad signalling pathway in the rhabdomyosarcoma cell line RD. / Int J Exp Pathol 2003, 84:153-63. CrossRef
    70. ten Dijke P, Hill CS: New insights into TGF-beta-Smad signalling. / Trends Biochem Sci 2004, 29:265-73. CrossRef
    71. Levy L, Hill CS: Smad4 dependency defines two classes of transforming growth factor beta (TGF-{beta}) target genes and distinguishes TGF-{beta}-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. / Mol Cell Biol 2005, 25:8108-125. CrossRef
    72. Kaminska B, Wesolowska A, Danilkiewicz M: TGF beta signalling and its role in tumour pathogenesis. / Acta Biochim Pol 2005, 52:329-37.
    73. Finnson KW, Parker WL, Chi Y, Hoemann CD, Goldring MB, Antoniou J, Philip A: Endoglin differentially regulates TGF-beta-induced Smad2/3 and Smad1/5 signalling and its expression correlates with extracellular matrix production and cellular differentiation state in human chondrocytes. / Osteoarthr Cartil 2010, 18:1518-527. CrossRef
    74. Chen M, Lv Z, Jiang S: The effects of triptolide on airway remodelling and transforming growth factor-beta/Smad signalling pathway in ovalbumin-sensitized mice. / Immunology 2011, 132:376-84. CrossRef
    75. Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, Kostakis A, Nikiteas N, Papavassiliou AG: TGF-beta signalling in colon carcinogenesis. / Cancer Lett 2012, 314:1-. CrossRef
    76. Park BJ, Park JI, Byun DS, Park JH, Chi SG: Mitogenic conversion of transforming growth factor-beta1 effect by oncogenic Ha-Ras-induced activation of the mitogen-activated protein kinase signaling pathway in human prostate cancer. / Cancer Res 2000, 60:3031-038.
    77. Dai C, Yang J, Liu Y: Transforming growth factor-beta1 potentiates renal tubular epithelial cell death by a mechanism independent of Smad signaling. / J Biol Chem 2003, 278:12537-2545. CrossRef
    78. Kim YK: TGF-beta1 induction of p21WAF1/cip1 requires Smad-independent protein kinase C signaling pathway. / Arch Pharm Res 2007, 30:739-42. CrossRef
    79. Niculescu-Duvaz I, Phanish MK, Colville-Nash P, Dockrell ME: The TGFbeta1-induced fibronectin in human renal proximal tubular epithelial cells is p38 MAP kinase dependent and Smad independent. / Nephron Exp Nephrol 2007, 105:e108-e116. CrossRef
    80. Kane NM, Jones M, Brosens JJ, Kelly RW, Saunders PT, Critchley HO: TGFbeta1 attenuates expression of prolactin and IGFBP-1 in decidualized endometrial stromal cells by both SMAD-dependent and SMAD-independent pathways. / PLoS One 2010, 5:e12970. CrossRef
    81. Watkins SJ, Borthwick GM, Oakenfull R, Robson A, Arthur HM: Angiotensin II-induced cardiomyocyte hypertrophy in vitro is TAK1-dependent and Smad2/3-independent. / Hypertens Res 2012, 35:393-98. CrossRef
    82. Gomes FC, Sousa Vde O, Romao L: Emerging roles for TGF-beta1 in nervous system development. / Int J Dev Neurosci 2005, 23:413-24. CrossRef
    83. Buss A, Pech K, Kakulas BA, Martin D, Schoenen J, Noth J, Brook GA: TGF-beta1 and TGF-beta2 expression after traumatic human spinal cord injury. / Spinal Cord 2008, 46:364-71. CrossRef
    84. Komuta Y, Teng X, Yanagisawa H, Sango K, Kawamura K, Kawano H: Expression of transforming growth factor-beta receptors in meningeal fibroblasts of the injured mouse brain. / Cell Mol Neurobiol 2010, 30:101-11. CrossRef
    85. Zhou Y, Fang SH, Ye YL, Chu LS, Zhang WP, Wang ML, Wei EQ: Caffeic acid ameliorates early and delayed brain injuries after focal cerebral ischemia in rats. / Acta Pharmacol Sin 2006, 27:1103-110. CrossRef
    86. Zhang L, Zhang WP, Chen KD, Qian XD, Fang SH, Wei EQ: Caffeic acid attenuates neuronal damage, astrogliosis and glial scar formation in mouse brain with cryoinjury. / Life Sci 2007, 80:530-37. CrossRef
  • 作者单位:Xue-Qin Huang (1)
    Xia-Yan Zhang (1)
    Xiao-Rong Wang (1)
    Shu-Ying Yu (1)
    San-Hua Fang (1)
    Yun-Bi Lu (1)
    Wei-Ping Zhang (1)
    Er-Qing Wei (1)

    1. Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
  • ISSN:1742-2094
文摘
Background Transforming growth factor-β1 (TGF-β1) is an important regulator of cell migration and plays a role in the scarring response in injured brain. It is also reported that 5-lipoxygenase (5-LOX) and its products, cysteinyl leukotrienes (CysLTs, namely LTC4, LTD4 and LTE4), as well as cysteinyl leukotriene receptor 1 (CysLT1R) are closely associated with astrocyte proliferation and glial scar formation after brain injury. However, how these molecules act on astrocyte migration, an initial step of the scarring response, is unknown. To clarify this, we determined the roles of 5-LOX and CysLT1R in TGF-β1-induced astrocyte migration. Methods In primary cultures of rat astrocytes, the effects of TGF-β1 and CysLT receptor agonists on migration and proliferation were assayed, and the expression of 5-LOX, CysLT receptors and TGF-β1 was detected. 5-LOX activation was analyzed by measuring its products (CysLTs) and applying its inhibitor. The role of CysLT1R was investigated by applying CysLT receptor antagonists and CysLT1R knockdown by small interfering RNA (siRNA). TGF-β1 release was assayed as well. Results TGF-β1-induced astrocyte migration was potentiated by LTD4, but attenuated by the 5-LOX inhibitor zileuton and the CysLT1R antagonist montelukast. The non-selective agonist LTD4 at 0.1 to 10 nM also induced a mild migration; however, the selective agonist N-methyl-LTC4 and the selective antagonist Bay cysLT2 for CysLT2R had no effects. Moreover, CysLT1R siRNA inhibited TGF-β1- and LTD4-induced astrocyte migration by down-regulating the expression of this receptor. However, TGF-β1 and LTD4 at various concentrations did not affect astrocyte proliferation 24?h after exposure. On the other hand, TGF-β1 increased 5-LOX expression and the production of CysLTs, and up-regulated CysLT1R (not CysLT2R), while LTD4 and N-methyl-LTC4 did not affect TGF-β1 expression and release. Conclusions TGF-β1-induced astrocyte migration is, at least in part, mediated by enhanced endogenous CysLTs through activating CysLT1R. These findings indicate that the interaction between the cytokine TGF-β1 and the pro-inflammatory mediators CysLTs in the regulation of astrocyte function is relevant to glial scar formation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700