Mg x Zn1?em class="a-plus-plus">x O Thin-Film Transistor-Based UV Photodetector with Enhanced Photoresponse
详细信息    查看全文
  • 作者:Chieh-Jen Ku ; Pavel Reyes ; Ziqing Duan ; Wen-Chiang Hong…
  • 关键词:MgZnO ; ZnO ; thin ; film transistors ; UV photodetectors
  • 刊名:Journal of Electronic Materials
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:44
  • 期:10
  • 页码:3471-3476
  • 全文大小:2,804 KB
  • 参考文献:1.A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, and H. Koinuma, Appl. Phys. Lett. 72, 2466 (1998).CrossRef
    2.S. Muthukumar, J. Zhong, Y. Chen, T. Siegrist, and Y. Lu, Appl. Phys. Lett. 82, 742 (2003).CrossRef
    3.S. Muthukumar, Y. Chen, J. Zhong, F. Cosandey, Y. Lu, and T. Siegrist, J. Cryst. Growth 261, 316 (2004).CrossRef
    4.T. Komaru, S. Shimizu, M. Kanbe, Y. Maeda, T. Kamiya, C. M. Fortmann, I. Shimizu, J. Appl. Phys. 38, 5796 (1999).
    5.Shen Chu et al, Electrically pumped wave guide lasing from ZnO nanowires. Nat. Nanotechnol. (2011).
    6.D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, M.Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998).CrossRef
    7.Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segewa, Appl. Phys. Lett. 72, 3270 (1998).CrossRef
    8.M. Wraback, H. Shen, S. Liang, C.R. Gorla, and Y. Lu, Appl. Phys. Lett. 74, 507 (1999).CrossRef
    9.Y. Wu, H. Yan, M. Huang, B. Messer, J.H. Song, and P. Yang, Eur. J. Chem. 8, 1260 (2002).CrossRef
    10.Y. Liu, C.R. Gorla, N.W. Emanetoglu, S. Liang, and Y. Lu, J. Electron. Mater. 27, 69 (2000).CrossRef
    11.D.C. Look, Mater. Sci. Eng., B 80, 383 (2001).CrossRef
    12.E. Mollwo, Proceedings of the Photoconductivity Conference, ed. R.G. Breckenridge (New York: Wiley, 1954), p. 509.
    13.P.H. Miller, Proceedings of the Photoconductivity Conference, ed. R.G. Breckenridge (New York: Wiley, 1954), p. 287.
    14.R.J. Collins and D.G. Thomas, Phys. Rev. 112, 388 (1958).CrossRef
    15.G. Heiland, J. Phys. Chem. Solids 22, 227 (1961).CrossRef
    16.H. Fabricius, T. Skettrup, and P. Bisgaard, Appl. Optics 25, 2764 (1986).CrossRef
    17.A.M. Fernandez and P.J. Sebastian, J. Phys. D 26, 2001 (1993).CrossRef
    18.Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, J. Electron. Mater. 29, 69 (2000).CrossRef
    19.S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110 (2001).CrossRef
    20.D. C. Oh, T. Suzuki, T. hanada, T. Yao, H. Makino, and H. J. Ko, J. Vac. Sci. Technol. B 24, 1595 (2006).
    21.C.S. Lao, M.C. Park, Q. Kuang, Y.L. Deng, A.K. Sood, D.L. Polla, and Z.L. Wang, J. Am. Chem. Soc. 129, 12096 (2007).CrossRef
    22.Y. Jin, J. Wang, B. Sun, J.C. Blakesley, and N.C. Greenham, Nano Lett. 8, 1653 (2008).
    23.Q.A. Xu, J.W. Zhang, K.R. Ju, X.D. Yang, and X. Hou, J. Cryst. Growth 289, 44-7 (2006).CrossRef
    24.K.W. Liu, J.G. Ma, J.Y. Zhang, Y.M. Lu, D.Y. Jiang, B.H. Li, D.X. Zhao, Z.Z. Zhang, B. Yao, and D.Z. Shen, Solid State Electron. 51, 757-61 (2007).CrossRef
    25.L. Luo, Y. Zhang, S.S. Mao, and L. Lin, Sens. Actuators, A 127, 201-06 (2006).CrossRef
    26.D. Jiang, J. Zhang, Y. Lu, K. Liu, D. Zhao, Z. Zhang, D. Shen, and X. Fan, Solid State Electron. 52, 679-82 (2008).CrossRef
    27.K. Lee, K.-T. Kim, J.-M. Choi, M.S. Oh, D.K. Hwang, S. Jang, E. Kim, and S. Im, J. Phys. D 41, 135102 (2008).CrossRef
    28.I.-S. Jeong, J.-H. Kim, and S. Im, Appl. Phys. Lett. 83, 2946 (2003).CrossRef
    29.C.Y. Liu, B.P. Zhang, Z.W. Lu, N.T. Binh, K. Wakatsuki, Y. Segawa, and R. Mu, J. Mater. Sci. 20, 197-01 (2009).
    30.H.S. Bae, M.H. Yoon, J.H. Kim, and S. Im, App. Phys. Lett 83, 5313 (2003).CrossRef
    31.P.I. Reyes, C.-J. Ku, Z. Duan, Y. Xu, E. Garfunkel, and Y. Lu, Appl. Phys. Lett. 101, 031118 (2012).CrossRef
    32.C.T. Tsai, T.-C. Chang, S.-C. Chen, I. Lo, S.-W. Tsao, M.-C. Hung, J.-J. Chang, C.-Y. Wu, and C.-Y. Huang, Appl. Phys. Lett. 96, 242105 (2010).CrossRef
    33.S.R. Ali Raza, Y.T. Lee, S.H.H. Shokouh, R. Ha, H.-J. Choi, and S. Im, Nanoscale, 5, 10829, (2013).
    34.S.H.H. Shokouh, S.R.A. Raza, H.S. Lee, and S. Im, Phys. Chem. Chem. Phys. 16, 16367-6372 (2014).CrossRef
    35.S.H.H. Shokouh, A. Pezeshki, S.R.A. Raza, K. Choi, S.-W. Min, P.J. Jeon, H.S. Lee, and S. Im, ACS Nano 8, 5174 (2014).CrossRef
    36.S. Choopun, R.D. Visoute, W. Yang, R.P. Sharma, T. Venkatesan, and H. Shen, Appl. Phys. Lett. 80, 1529 (2002).CrossRef
    37.Y. Jin, J. Wang, B. Sun, J.C. Blakesley, and N.C. Greenham, Nano Lett. 8, 1653 (2008).
    38.C.J. Ku, Z. Duan, P.I. Reyes, Y. Lu, Y. Xu, C.L. Hsueh, and E. Garfunkel, Appl. Phys. Lett. 98, 123511 (2011).CrossRef
    39.Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, Jpn. J. Appl. Phys. 33, 6611 (1994).CrossRef
    40.S. Lany and A. Zunger, Phys. Rev. B 72, 035215 (2005).CrossRef
  • 作者单位:Chieh-Jen Ku (1)
    Pavel Reyes (1)
    Ziqing Duan (1)
    Wen-Chiang Hong (1)
    Rui Li (1)
    Yicheng Lu (1)

    1. Department of Electrical and Computer Engineering, Rutgers University, 94 Brett Road, Piscataway, NJ, 08854, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
ZnO and its ternary alloy Mg x Zn1?em class="EmphasisTypeItalic ">x O (MZO) are promising wide-band-gap semiconductor materials well-suited to UV detection. The Mg content of MZO facilitates energy band gap engineering, enabling fabrication of UV photodetectors that can operate in the deep-UV region. Different types of UV photodetector based on ZnO have been reported, including photoconductive, Schottky, and transistor types. Transistor-based photodetectors have the advantage of being three-terminal devices, thus enabling biasing control and implementation in addressable arrays. In this paper we report an MZO thin-film-transistor (TFT)-based UV photodetector. The device has a low dark current (2 × 10?4 A) and an ON/OFF ratio of 1011. We show that by using a small amount of Mg (5%) in the MZO TFT we can substantially improve the photoresponse recovery time of the photodetector to 15 ms compared with 42 ms for a similar TFT with 0% Mg. We also observed a shift in the cutoff wavelength from 377.21 nm for the 0% Mg TFT photodetector down to 370.96 nm for the MZO TFT photodetector. We attribute the enhanced recovery time improvement of the MZO TFT UV photodetector to suppression of oxygen vacancies as a result of incorporation of the Mg in the MZO. Keywords MgZnO ZnO thin-film transistors UV photodetectors

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700