The impact of increased soil risk elements on carotenoid contents
详细信息    查看全文
  • 作者:Dagmar Procházková (1)
    Daniel Haisel (1)
    Daniela Pavlíková (2)
    Ji?ina Száková (2)
    Na?a Wilhelmová (1)
  • 关键词:Arsenic ; Cadmium ; Zinc ; Xanthophyll cycle ; Neoxanthin ; Lutein
  • 刊名:Central European Journal of Biology
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:9
  • 期:7
  • 页码:678-685
  • 全文大小:
  • 参考文献:1. Cullen W.R., Reimer K.J., Arsenic specification in the environment, Chem. Rev., 1989, 89, 713-64 <a class="external" href="http://dx.doi.org/10.1021/cr00094a002" target="_blank" title="It opens in new window">CrossRefa>
    2. Requejo R., Tena M., Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity, Phytochemistry, 2005, 66, 1519-528 <a class="external" href="http://dx.doi.org/10.1016/j.phytochem.2005.05.003" target="_blank" title="It opens in new window">CrossRefa>
    3. Janou?ková M., Pavlíková, D., Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium, Plant Soil, 2010, 332, 511-20 <a class="external" href="http://dx.doi.org/10.1007/s11104-010-0317-2" target="_blank" title="It opens in new window">CrossRefa>
    4. Baker A.J.M., Proctor J., The influence of cadmium, copper, lead, and zinc on the distribution and evolution of metallophytes in the British Isles, Plant Syst. Evol., 1990, 173, 91-08 <a class="external" href="http://dx.doi.org/10.1007/BF00937765" target="_blank" title="It opens in new window">CrossRefa>
    5. Ernst W.H.O., Verkleij J.A.C., Schat H., Metal tolerance in plants, Acta Botanica Neerlandica, 1992, 41, 229-48
    6. Rengel Z., Ecotypes of Holcus lanatus tolerant to zinc toxicity also tolerate zinc deficiency, Ann. Bot., 2000, 86, 1119-126 <a class="external" href="http://dx.doi.org/10.1006/anbo.2000.1282" target="_blank" title="It opens in new window">CrossRefa>
    7. Sagardoy R., Morales F., López-Millán A.F., Abaa A., Abaa J., Effects if zinc toxicity in sugar beet (Beta vulgaris L.) plants grown in hydroponics, Plant Biol., 2009, 11, 339-50 <a class="external" href="http://dx.doi.org/10.1111/j.1438-8677.2008.00153.x" target="_blank" title="It opens in new window">CrossRefa>
    8. Kusznierewicz B., Baczek-Kwinta R., Bartoczek A., Piekarska A., Huk A., Manikowska A., Antokiewicz J., Namiesnik J., Konieczka P., The dose dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. Capitata f. Alba), Environ. Toxicol., 2012, 31, 2482-489 <a class="external" href="http://dx.doi.org/10.1002/etc.1977" target="_blank" title="It opens in new window">CrossRefa>
    9. Finnegan P.M., Chen W., Arsenic toxicity: the effects on plant metabolism, Front. Physiol., 2012, 3, 1-8 <a class="external" href="http://dx.doi.org/10.3389/fphys.2012.00182" target="_blank" title="It opens in new window">CrossRefa>
    10. Stobart A.K., Griffith W.T., Bukhari I.A., Sherwood R.P., The effect of Cd on the biosynthesis of chlorophyll in leaves of barley, Physiol. Plant., 1985, 63, 293-98 <a class="external" href="http://dx.doi.org/10.1111/j.1399-3054.1985.tb04268.x" target="_blank" title="It opens in new window">CrossRefa>
    11. Babu N.G., Sarma P.A., Attitalla I.H., Murthy S.D.S., Effect of selected heavy metal ions on the photosynthetic electron transport and energy transfer in the thylakoid membrane of the Cyanobacterium, Spirulina platensis, Acad. J. Plant Sci., 2010, 3, 46-9
    12. Belatik A., Hotchandani S., Carpentier R., (2013) Inhibition of the water oxidizing complex of Photosystem II and the reoxidation of the quinone acceptor QA- by Pb2+, PLoS ONE, 2013, 8, e68142. doi:10.1371/journal.pone.0068142 <a class="external" href="http://dx.doi.org/10.1371/journal.pone.0068142" target="_blank" title="It opens in new window">CrossRefa>
    13. Küpper H., ?etlík I., Spiller M., Küpper F.C., Prá?il O., Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation, J. Phycol., 2002, 38, 429-41 <a class="external" href="http://dx.doi.org/10.1046/j.1529-8817.2002.t01-1-01148.x" target="_blank" title="It opens in new window">CrossRefa>
    14. Vavilin D.V., Polynov V.A., Matorin D.N. Venediktov P. S., Sublethal concentrations of copper stimulate photosystem II photoinhibition in Chlorella pyrenoidosa, Plant Physiol., 1995, 146, 609-14 <a class="external" href="http://dx.doi.org/10.1016/S0176-1617(11)81922-X" target="_blank" title="It opens in new window">CrossRefa>
    15. Maksymiec W., Wójcik M., Krupa Z., Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate, Chemosphere, 2007, 66, 421-27 <a class="external" href="http://dx.doi.org/10.1016/j.chemosphere.2006.06.025" target="_blank" title="It opens in new window">CrossRefa>
    16. Romanowska E., Igamberdiev A., Parys E., Gardestr?m A., Stimulation of respiration by Pb+ ions in detached leaves and mitochondria of C3 and C4 plants, Plant Physiol., 2002, 116, 148-54 <a class="external" href="http://dx.doi.org/10.1034/j.1399-3054.2002.1160203.x" target="_blank" title="It opens in new window">CrossRefa>
    17. Hattab S., Dridi B., Chouba L., Kheder M.B., Bousetta H., Photosynthesis and growth responses of pea Pisum sativum L. under heavy metal stress, J. Environ. Sci., 2009, 21, 1552-556 <a class="external" href="http://dx.doi.org/10.1016/S1001-0742(08)62454-7" target="_blank" title="It opens in new window">CrossRefa>
    18. Dietz, K.J., Baier, M., Kr?mer, U., 1999. Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants, in: Prasad, M.N.V., Hagemeyer, J., (Eds.), Heavy Metal Stress in Plants: from Molecules to Ecosystems. Berlin: Springer-Verlag, pp. 73-7. <a class="external" href="http://dx.doi.org/10.1007/978-3-662-07745-0_4" target="_blank" title="It opens in new window">CrossRefa>
    19. Hall J.L., Cellular mechanisms for heavy metal detoxification and tolerance, J. Exp. Bot., 2002, 53, 1-1 <a class="external" href="http://dx.doi.org/10.1093/jexbot/53.366.1" target="_blank" title="It opens in new window">CrossRefa>
    20. Procházková D., Wilhelmová N., 2010. Antioxidant protection during abiotic stresses, in: Pessarakli M.N.V. (Ed.), Hand Book of Plant and Crop Stress. Taylor and Francis Group, Boca Raton -London -New York, pp. 139-55. <a class="external" href="http://dx.doi.org/10.1201/b10329-9" target="_blank" title="It opens in new window">CrossRefa>
    21. Demmig-Adams B., Carotenoids and photoprotection in plants: a role for the xanthophyll cycle, Biochim. Biophys. Acta, 1990, 1020, 1-4 <a class="external" href="http://dx.doi.org/10.1016/0005-2728(90)90088-L" target="_blank" title="It opens in new window">CrossRefa>
    22. Artetxe U., García-Plazaola J.I., Hernández A., Becerril J.M., Low light grown duckweed plants are more protected against the toxicity induced by Zn and Cd, Plant Physiol. Biochem., 2002, 40, 859-63 <a class="external" href="http://dx.doi.org/10.1016/S0981-9428(02)01446-8" target="_blank" title="It opens in new window">CrossRefa>
    23. Latowski D., Kruk J., Strzalka K., Inhibition of zeaxanthin epoxidase activity by cadmium ions in higher plants, J. Inorg. Biochem., 2005, 99, 2081-087 <a class="external" href="http://dx.doi.org/10.1016/j.jinorgbio.2005.07.012" target="_blank" title="It opens in new window">CrossRefa>
    24. Gan S, Amasino RM., Inhibition of leaf senescence by autoregulated production of cytokinin, Science, 1995, 270, 1986-988 <a class="external" href="http://dx.doi.org/10.1126/science.270.5244.1986" target="_blank" title="It opens in new window">CrossRefa>
    25. Zhang J., Van Toai T., Huynh L., Preiszner J., Development of flooding-tolerant Arabidopsis by autoregulated cytokinin production, Mol. Breed., 2000, 6, 135-44 <a class="external" href="http://dx.doi.org/10.1023/A:1009694029297" target="_blank" title="It opens in new window">CrossRefa>
    26. Huynh L.N., Van Toai T., Streeter J., Banowetz G., Regulation of flooding tolerance of SAG12:ipt Arabidopsis plants by cytokinin, J. Exp. Bot., 2005, 56, 1397-407 <a class="external" href="http://dx.doi.org/10.1093/jxb/eri141" target="_blank" title="It opens in new window">CrossRefa>
    27. Xu Y., Gianfagna T., Huang B., Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species, J. Exp. Bot., 2010, 61, 3273-289 <a class="external" href="http://dx.doi.org/10.1093/jxb/erq149" target="_blank" title="It opens in new window">CrossRefa>
    28. Merewitz E., Gianfanga T., Huang B., Effects of SAG12-ipt and HSP 18.2-ipt expression on cytokinin production, root growth and leaf senescence in creeping bentgrass exposed to drought stress, J. Am. Soc. Hortic. Sci., 2010, 135, 230-39
    29. Procházková D., Haisel D., Pavlíková D., Schnablová R., Száková J., Vytá?ek R., Wilhelmová N., The effect of risk elements in soil to nitric oxide metabolism in tobacco plants, Plant, Soil Environ., 2012, 58, 435-40 <a class="external" href="http://dx.doi.org/10.1080/00380768.2012.703610" target="_blank" title="It opens in new window">CrossRefa>
    30. Procházková D., Haisel D., Wilhelmová N., Antioxidant protection during ageing and senescence in chloroplasts of tobacco with modulated life span, Cell Biochem. Funct., 2008, 26, 1- <a class="external" href="http://dx.doi.org/10.1002/cbf.1481" target="_blank" title="It opens in new window">CrossRefa>
    31. ?alud P., Száková J., Sysalová J., Tlusto? P., The effect of contaminated urban particulate matter on risk element contents in leafy vegetables, Centr. Eur. J. Biol., 2012, 7, 519-30 <a class="external" href="http://dx.doi.org/10.2478/s11535-012-0029-0" target="_blank" title="It opens in new window">CrossRefa>
    32. Tripathy J.N., Zhang J., Robin S., Nguyen T.T., Nguyen H.T., 2000. QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Thoer. Appl. Genet., 2000, 100, 1197-202 <a class="external" href="http://dx.doi.org/10.1007/s001220051424" target="_blank" title="It opens in new window">CrossRefa>
    33. Rohá?ek K., Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning and mutual relationships, Photosythetica, 2002, 40, 13-9 <a class="external" href="http://dx.doi.org/10.1023/A:1020125719386" target="_blank" title="It opens in new window">CrossRefa>
    34. Havaux M., Niyogi K.K., The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism, Proc. Natl. Acad. Sci. USA, 1999, 96, 8762-767 <a class="external" href="http://dx.doi.org/10.1073/pnas.96.15.8762" target="_blank" title="It opens in new window">CrossRefa>
    35. Havaux M., Bonfils J.P., Lütz C., Niyogi K.K., Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin deepoxidase, Plant Physiol., 2000, 124, 273-84 <a class="external" href="http://dx.doi.org/10.1104/pp.124.1.273" target="_blank" title="It opens in new window">CrossRefa>
    36. Havaux M., Dall?sto L., Cuiné S., Giuliano G., Bassi R., The effect of zeaxanthin as the only xanthophylls on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana, J. Biol. Chem., 2004, 279, 13878-3888 <a class="external" href="http://dx.doi.org/10.1074/jbc.M311154200" target="_blank" title="It opens in new window">CrossRefa>
    37. Müller P., Li X.P., Niyogi K.K., Non-photochemical quenching. A response to excess light energy, Plant Physiol., 2001, 125, 1558-566 <a class="external" href="http://dx.doi.org/10.1104/pp.125.4.1558" target="_blank" title="It opens in new window">CrossRefa>
    38. Baroli I., Do A.D., Yamane T., Niyogi K.K., Zeaxanthin accumulation in the absence of a functional xanthophylls cycle protects Chlamydomonas reinhardtii from photooxidative stress, Plant Cell, 2003, 15, 992-008 <a class="external" href="http://dx.doi.org/10.1105/tpc.010405" target="_blank" title="It opens in new window">CrossRefa>
    39. Inoue K., Carotenoid hydroxylation - P450 finally!, Trends Plant Sci., 2004, 9, 515-17 <a class="external" href="http://dx.doi.org/10.1016/j.tplants.2004.09.001" target="_blank" title="It opens in new window">CrossRefa>
    40. Bungard R.A., Ruban A.V., Hibberd J.M., Press M.C., Horton P., Scholes J.D., Unusual carotenoid composition and a new type of xanthophyll cycle in plants, Proc. Natl. Acad. Sci. USA, 1999, 96, 1135-139 <a class="external" href="http://dx.doi.org/10.1073/pnas.96.3.1135" target="_blank" title="It opens in new window">CrossRefa>
    41. Matsubara S., Morosinotto T., Bassi R., Christian A.L., Fischer-Schliebs E., Luttge U., Orthen B., Franco A.C., Scarano F.R., F?rster B., Pogson B.J., Osmond C.B., Occurrence of the luteinepoxide cycle in mistletoes of the Loranthaceae and Viscaceae, Planta, 2003, 217, 868-79 <a class="external" href="http://dx.doi.org/10.1007/s00425-003-1059-7" target="_blank" title="It opens in new window">CrossRefa>
    42. Garcia-Plazaola J.I., Matsubara S., Osmond C.B., Review: The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions, Funct. Plant. Biol., 2007, 34, 759-73 <a class="external" href="http://dx.doi.org/10.1071/FP07095" target="_blank" title="It opens in new window">CrossRefa>
    43. Kruk J., Szymańska R., Occurrence of neoxanthin and lutein epoxide cycle in parasitic Cuscuta species, Acta Biochim. Pol., 2008, 55, 183-90
    44. Procházková D., Haisel D., Wilhelmová N., Content of carotenoids during ageing and senescence of tobacco leaves with genetically modulated lifespan, Photosynthetica, 2009, 47, 409-14 <a class="external" href="http://dx.doi.org/10.1007/s11099-009-0062-z" target="_blank" title="It opens in new window">CrossRefa>
    45. Dall’Osto L., Cazzaniga S., North H., Marion-Poll A., Bassi R., The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress, Plant Cell, 2007, 19, 1048-064 <a class="external" href="http://dx.doi.org/10.1105/tpc.106.049114" target="_blank" title="It opens in new window">CrossRefa>
  • 作者单位:Dagmar Procházková (1)
    Daniel Haisel (1)
    Daniela Pavlíková (2)
    Ji?ina Száková (2)
    Na?a Wilhelmová (1)

    1. Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02, Prague 6, Czech Republic
    2. Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 21, Prague 6, Czech Republic
  • ISSN:1644-3632
文摘
A pot experiment was conducted to compare the responses of a non-transgenic tobacco plant (WT) and plants with genetically prolonged life-span (SAG) to risk elements of As, Cd and Zn. Plants were grown in control soil and in soil with higher levels of risk elements. The pigment contents were established by HPLC and chlorophyll fluorescence parameters were measured from slow kinetics after a 15 min dark period with the PAM fluorometer. Top (i.e. young) leaves of both WT and SAG plants were more sensitive to photoinhibition caused by these risk elements but plants showed acclimation to such elements in the bottom leaves. Plants differed in the participation of individual pigments of xanthophyll cycle: increased levels of risk elements seem to stimulate especially first (violaxanthin to antheraxanthin) and second (anhtheraxanthin to zeaxanthin) steps of the cycle in WT plants. In SAG plants, toxic elements caused an increase in the content, particularly of the initial compound of the cycle -violaxanthin.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700