New Pt(0) Nanoparticles as Highly Active and Reusable Catalysts in the C1–C3 Alcohol Oxidation and the Room Temperature Dehydrocoupling of Dimethylamine-Borane (DMAB)
详细信息    查看全文
  • 作者:Esma Erken ; Handan Pamuk ; Özlem Karatepe ; Gaye Başkaya…
  • 关键词:Energy storage ; Alcohol oxidation ; Nanostructure ; X ; ray diffraction
  • 刊名:Journal of Cluster Science
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:27
  • 期:1
  • 页码:9-23
  • 全文大小:1,516 KB
  • 参考文献:1.Z. Ozturk, F. Sen, S. Sen, and G. Gokagac (2012). J. Mater. Sci. 47, 8134–8144.CrossRef
    2.M. Gratzel (2003). Nature 414, 338–344.CrossRef
    3.F. Sen, S. Sen, and G. Gökağaç (2011). Phys. Chem. Chem. Phys. 13, 1676–1684.CrossRef
    4.J. Wang, S. Wasmus, and R. F. Savinell (1995). J. Electrochem. Soc. 142, 4218.CrossRef
    5.N. Fujiwara, K. A. Friedrich, and U. Stimming (1999). J. Electroanal. Chem. 472, 120–125.CrossRef
    6.A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J. M. Leger, and C. Lamy (1998). J. Electroanal. Chem. 444, 41–53.CrossRef
    7.W. Vielstich (2003). J. Braz. Chem. Soc. 14, 503–509.CrossRef
    8.X. Ren, P. Zelenay, S. Thomas, J. Davey, and S. Gottesfeld (2000). J. Power Sources 86, 111.CrossRef
    9.S. Wasmus and A. Kuver (1999). J. Electroanal. Chem. 461, 14–31.CrossRef
    10.V. Neburchilov, J. Martin, H. J. Wang, and J. J. Zhang (2007). J. Power Sources 169, 221–238.CrossRef
    11.B. D. McNicol, D. A. J. Rand, and K. R. Williams (1999). J. Power Sources 83, 15–31.CrossRef
    12.F. Sen and G. Gökağaç (2014). J. Appl. Electrochem. 44, 199–207.CrossRef
    13.S. Sen, F. Sen, and G. Gökağaç (2011). Phys. Chem. Chem. Phys. 13, 6784–6792.CrossRef
    14.J. Datta, S. Sıngh, S. Das, and N. R. Bandyopadhyay (2009). Bull. Mater. Sci. 32, (6), 643.CrossRef
    15.W. J. Zhou, S. Q. Song, W. Z. Li, Z. H. Zhou, G. Q. Sun, Q. Xin, S. Douvartzides, and P. Tsiakaras (2005). J. Power Sources 140, 50.CrossRef
    16.S. Sen Gupta and J. Datta (2005). J. Chem. Sci. 117, 337–344.CrossRef
    17.J. T. Wang, S. Wasmus, and R. F. Savinell (1995). J. Electrochem. Soc. 142, 4218–4224.CrossRef
    18.D. Cao and S. H. Bergens (2003). J. Power Sources 124, 12–17.CrossRef
    19.Z. G. Qi and A. Kaufman (2003). J. Power Sources 118, 54–60.CrossRef
    20.H. Uchida, Y. Mizuno, and M. Watanabe (2002). J. Electrochem. Soc. 149, A682.CrossRef
    21.W. C. Choi, J. D. Kim, and S. I. Woo (2002). Catal. Today 74, 235.CrossRef
    22.F. Sen and G. Gökağaç (2007). J. Phys. Chem. C 111, 1467–1473.CrossRef
    23.F. Sen and G. Gökağaç (2007). J. Phys. Chem. C 111, 5715–5720.CrossRef
    24.H. Pamuk, B. Aday, F. Sen, and M. Kaya (2015). RSC Adv.. doi:10.​1039/​C5RA06441D .
    25.P. T. A. Sumodjo, E. J. Silva, and T. Rabochai (1989). J. Electroanal. Chem. 271, 305.CrossRef
    26.S. Ertan, F. Sen, S. Sen, and G. Gökağaç (2012). J. Nanopart. Res. 14, 922.CrossRef
    27.F. Sen, G. Gökağaç, and S. Sen (2013). J. Nanopart. Res. 15, 1979.CrossRef
    28.F. Sen, Y. Karatas, M. Gulcan, and M. Zahmakiran (2014). RSC Adv. 4, 1526.CrossRef
    29.Z. Liu, X. Y. Ling, X. Su, and J. Y. Lee (2004). J. Phys. Chem. B 108, 8234–8240.CrossRef
    30.H. Klug and L. Alexander X-ray Diffraction Procedures, 1st ed (Wiley, New York, 1954).
    31.T. C. Deivaraj, W. X. Chen, and J. Y. Lee (2003). J. Mater. Chem. 13, 2555.CrossRef
    32.T. Yonezawa, N. Toshima, C. Wakai, M. Nakahara, M. Nishinaka, T. Tominaga, and H. Nomura (2000). Coll. Surf. A 169, 35–45.CrossRef
    33.J. Zhao, P. Wang, W. Chen, R. Liu, X. Li, and Q. Nie (2006). J. Power Sources 160, 563–569.CrossRef
    34.V. S. Bogotzky and Y. B. Vassilyev (1967). Electrochim. Acta 12, 1323.CrossRef
    35.S. P. Jiang, Z. Liu, H. L. Tang, and M. Pan (2006). Electrochim. Acta 51, 5721–5730.CrossRef
    36.Z. B. Wang, G. P. Yin, and P. F. Shi (2005). J. Electrochem. Soc. 152, A2406–A2412.CrossRef
    37.Y. T. Kim and T. Mitani (2006). J. Catal. 238, 394–401.CrossRef
    38.F. Kadirgan, S. Beyhan, and T. Atilan (2009). Int. J. Hydrog. Energy 34, 4312–4320.CrossRef
    39.S. Özkar and R. G. Finke (2002). J. Am. Chem. Soc. 124, 5796.CrossRef
    40.K. J. Laidler Chemical Kinetics, 3rd ed (Benjamin-Cummings, UK, 1997).
    41.H. Eyring (1935). J. Chem. Phys. 3, 107.CrossRef
    42.M. Zahmakiran and S. Ozkar (2009). Inorg. Chem. 48, 8955.CrossRef
    43.Y. Sun, L. Zhuang, J. Lu, X. Hong, and P. Liu (2007). J. Am. Chem. Soc. 129, 15465.CrossRef
    44.D. Pun, E. Lobkovsky, and P. J. Chirik (2007). Chem. Commun. 44, 3297.CrossRef
    45.M. Zahmakiran, M. Tristany, K. Philippot, K. Fajerwerg, S. Ozkar, and B. Chaudret (2010). Chem. Commun. 46, 2938.CrossRef
    46.C. A. Jaska, K. Temple, A. J. Lough, and I. Manners (2003). J. Am. Chem. Soc. 125, 9424.CrossRef
    47.T. J. Clark, C. A. Russell, and I. Manners (2006). J. Am. Chem. Soc. 128, 9582.CrossRef
    48.M. Sloan, T. J. Clark, and I. Manners (2009). Inorg. Chem. 48, 2429.CrossRef
    49.A. Friendrich, M. Drees, and S. Schneider (2009). Chem. Eur. J. 15, 10339.CrossRef
    50.R. J. Keaton, J. M. Blacquiere, and R. T. Baker (2007). J. Am. Chem. Soc. 129, 11936.CrossRef
    51.Y. Kawano, M. Uruichi, M. Shiomi, S. Taki, T. Kawaguchi, T. Kakizawa, and H. Ogino (2009). J. Am. Chem. Soc. 131, 14946.CrossRef
    52.A. P. M. Robertson, R. Suter, L. Chabanne, G. R. Whittel, and I. Manners (2011). Inorg. Chem. 50, 12680.CrossRef
  • 作者单位:Esma Erken (1)
    Handan Pamuk (1)
    Özlem Karatepe (1)
    Gaye Başkaya (1)
    Hakan Sert (2)
    Orhan Murat Kalfa (3)
    Fatih Şen (1)

    1. Biochemistry Department, Dumlupinar University, 43100, Kutahya, Turkey
    2. Chemical Engineering Department, Usak University, 64100, Uşak, Turkey
    3. Chemistry Department, Dumlupinar University, 43100, Kutahya, Turkey
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Inorganic Chemistry
    Physical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8862
文摘
New Pt(0) nanoparticles were easily and reproducibly prepared by the simultaneous reduction method using 1-butylamine (BA) and tributylamine (TBA) for the first time as capturing ligands at room temperature. X-ray diffraction, X-ray photoelectron microscopy and transmission electron microscopy measurements verify the formation of well-dispersed Pt(0) nanoparticles [~3.63 and ~3.98 nm for catalysts prepared using BA (catalyst I) and TBA (catalyst II), respectively] on an activated carbon surface. The catalytic performances of these nanoparticles in terms of activity, isolability and reusability were investigated for both alcohol oxidation and the dehydrocoupling of dimethylamine-borane (DMAB). These nanoparticles were shown to be as active and reusable heterogeneous catalysts even at room temperature. The prepared catalysts can catalyze the dehydrogenation of DMAB with one of the highest known activities at room temperature and also C1–C3 alcohol oxidation with very high electrochemical activities. Keywords Energy storage Alcohol oxidation Nanostructure X-ray diffraction

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700