Enzyme-catalysed synthesis of calcium phosphates
详细信息    查看全文
  • 作者:Christiane Hoffmann ; Cordt Zollfrank and Günter Ziegler
  • 刊名:Journal of Materials Science Materials in Medicine
  • 出版年:2008
  • 出版时间:February, 2008
  • 年:2008
  • 卷:19
  • 期:2
  • 页码:907-915
  • 全文大小:349.8 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Characterization and Evaluation Materials
    Polymer Sciences
    Metallic Materials
    Ceramics,Glass,Composites,Natural Materials
    Surfaces and Interfaces and Thin Films
  • 出版者:Springer Netherlands
  • ISSN:1573-4838
文摘
A biomimetic method is described for the precipitation of nanosized calcium phosphates using the alkaline phosphatase (EC 3.1.3.1), which is responsible for hydrolysis of organic and inorganic phosphates in vivo. Buffered solutions containing glycerol-2-phosphate and CaCl2 in addition to MgCl2 and the respective enzyme were prepared for calcium phosphate precipitation. The phosphate group of glycerol-2-phosphate was cleaved through enzymatic hydrolysis. The local inorganic phosphate concentration increased resulting in the precipitation of nanosized calcium phosphates phases (Ca–P phase) composed of calcium deficient hydroxyapatite (CDHA) and hydroxyapatite (HA). At high Ca2+-concentration and large enzyme amounts mixed phases of HA/CDHA with an increasing quantity of HA were favoured. Under basic conditions (pH > 9) formation of HA was observed, whereas at neutral pH of 7.5 CDHA was primarily formed. The assignment of Ca–P phases was accomplished by FT-IR and Raman-spectroscopy in addition to X-ray diffractometry. The Ca–P materials exhibited BET surface areas of 173 m2/g. SEM-micrographs of the Ca–P powders showed globular-shaped agglomerates of Ca–P particles. The size of the Ca–P crystallite ranged from 9 nm to 25 nm according to transmission electron microscopy (TEM), where round-shaped, platelike and fibrelike crystallites were found. All crystallites showed diffuse ring patterns in electron diffraction confirming the nanosize of the precipitate. Using the developed technique, it was possible to synthesise 100 g of bonelike Ca–P materials in 1 day using 15 L batches with optimised parameters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700