Explosive synchronization enhances selectivity: Example of the cochlea
详细信息    查看全文
文摘
Acoustical signal transduction in the cochlea is an active process that involves nonlinear amplification and spontaneous otoacoustic emissions. Signal transduction involves individual subunits composed of globally coupled hair cells, which can be modeled as oscillators close to a Hopf bifurcation. The coupling may induce a transition toward synchronization, which in turn leads to a strong nonlinear response. In the model studied here, the synchronization transition of the subunit is discontinuous (explosive) in the absence of an external stimulus. We show that, in the presence of an external stimulus and for a coupling strength slightly lower than the critical value leading to explosive synchronization, the response of the subunit has better frequency selectivity and a larger signal-to-noise ratio. From physiological observations that subunits are themselves coupled together, we further propose a model of the complete cochlea, accounting for the ensemble of frequencies that the organ is able to detect.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700