Poly(γ-glutamic acid) enhanced tolerance to salt stress by promoting proline accumulation in Brassica napus L.
详细信息    查看全文
  • 作者:Peng Lei ; Zongqi Xu ; Jinfeng Liang ; Xiaohui Luo ; Yunxia Zhang…
  • 关键词:γ ; PGA ; Salt stress ; K+/Na+ ratio ; Antioxidase ; Proline accumulation ; Proline metabolism regulation genes
  • 刊名:Plant Growth Regulation
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:78
  • 期:2
  • 页码:233-241
  • 全文大小:617 KB
  • 参考文献:Abedi T, Pakniyat H (2010) Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech J Genet Plant Breed 46:27–34
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRef PubMed
    Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173CrossRef
    Ashraf M, Ali Q (2007) Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot 63:266–273CrossRef
    Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRef
    Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207CrossRef
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRef
    Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defence system in soybean root nodules. Aust J Plant Physiol 25:665–671CrossRef
    Dehghan G, Rezazadeh L, Habibi G (2011) Exogenous ascorbate improves antioxidant defense system and induces salinity tolerance in soybean seedlings. Acta Biol Szeged 55:261–264
    Dhindsa D (ed) (1980) Immunological aspects of infertility and fertility regulation. Elsevier, New York
    Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9CrossRef
    Djanaguiraman M, Prasad PVV (2013) Effects of salinity on ion transport, water, relations and oxidative damage. In: Ahmad P, Prasad MNV, Azooz MM (eds) Ecophysiology and responses of plants under salt stress. Springer, Berlin, pp 89–114CrossRef
    Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404CrossRef
    Funk R (2009) Fertilizer containing polyamino acid. USA Patent US 7,534,280
    Gorham J (1990) Salt tolerance in the triticeae: K/Na discrimination in synthetic hexaploid wheats. J Exp Bot 41:623–627CrossRef
    Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136PubMedCentral CrossRef PubMed
    Hu M, Shi Z, Zhang Z, Zhang Y, Li H (2012) Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regul 68:177–188CrossRef
    Kaku H, Nishizawa Y, Ishii-MinamiN Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. PNAS 103:11086–11091PubMedCentral CrossRef PubMed
    Kamiab F, Talaie A, Khezri M, Javanshah A (2014) Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings. Plant Growth Regul 72:257–268CrossRef
    Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM (2003) Proline induces the expression of salt stress responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt stress. J Exp Bot 54:2553–2562CrossRef PubMed
    Kinnersley AM, Koskan LP, Strom DJ (1994) Composition and method for enhanced fertilizer uptake by plants. USA Patent US 5,350,735
    Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394PubMedCentral PubMed
    Koskan LP, Meah ARY, Sander JL (1998) Method and composition for enhanced hydroponic plant productivity with polyamino acids. USA Patent US 5,783,523
    Liang M, Lin M, Lin Z, Zhao L, Zhao G, Li Q, Yin X (2015) Identification, functional characterization, and expression pattern of a NaCl-inducible vacuolar Na+/H+ antiporter in chicory (Cichorium intybus L.). Plant Growth Regul 75:605–614CrossRef
    Liu X, Chi H, Yue M, Zhang X, Li W, Jia E (2012) The regulation of exogenous jasmonic acid acid on UV-B stress tolerance in wheat. J Plant Growth Regul 31:436–447CrossRef
    Liu H, Zhang YH, Yin H, Wang WX, Zhao XM, Du YG (2013) Alginate oligosaccharides enhanced Triticum asetivum L. tolerance to drought stress. Plant Physiol Biochem 62:33–40CrossRef PubMed
    Ma L, Li Y, Yu C, Wang Y, Li X, Li N, Chen Q, Bu N (2012) Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma 249:393–399CrossRef PubMed
    Nayidu N, Bollina V, Kagale S (2013) Oilseed crop productivity under salt stress. In: Ahmad P, Prasad MNV, Azooz MM (eds) Ecophysiology and responses of plants under salt stress. Springer, Berlin, pp 249–265CrossRef
    Nazarbeygi E, Yazdi HL, Naseri R, Soleimani R (2011) The effects of different levels of salinity on proline and A-, B-chlorophylls in canola. Am Eurasian J Agric Environ Sci 10:70–74
    Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282CrossRef PubMed
    Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxcol Environ Saf 60:324–349CrossRef
    Shih I-L, Van Y-T (2001) The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour Technol 79:207–225CrossRef PubMed
    Sobahan MA, Arias CR, Okuma E, Shimoishi Y, Nakamura Y, Hirai Y, Mori IC, Murata Y (2009) Exogenous proline and glycinebetaine suppress apoplastic flow to reduce Na+ uptake in rice seedlings. Biosci Biotechnol Biochem 73:2037–2042CrossRef PubMed
    Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97CrossRef PubMed
    Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland
    Teh CY, Mahmood M, Shaharuddin NA, Ho CL (2015) In vitro rice shoot apices as simple model to study the effect of NaCl and the potential of exogenous proline and glutathione in mitigating salinity stress. Plant Growth Regul 75:771–781CrossRef
    Xu Z, Wan Ch, Xu X, Feng X, Xu H (2013a) Effect of poly (γ-glutamic acid) on wheat productivity, nitrogen use efficiency and soil microbes. J Soil Sci Plant Nutr 13:774–775
    Xu Z, Lei P, Feng X, Xu X, Xu H, Yang H, Tang W (2013b) Effect of poly(γ-glutamic acid) on microbial community and nitrogen pools of soil. Acta Agr Scand B-S P 63:657–668
    Xu Z, Lei P, Feng X, Xu X, Liang J, Chi B, Xu H (2014) Calcium involved in the poly(γ-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism. Plant Physiol Biochem 80:144–152CrossRef PubMed
    Xue X, Liu A, Hua X (2009) Proline accumulation and transcriptional regulation of proline biothesynthesis and degradation in Brassica napus. BMB Rep 42:28–34CrossRef PubMed
    Yan Z, Guo S, Shu S, Sun J, Tezuka T (2011) Effects of proline on photosynthesis, root reactive oxygen species (ROS) metabolism in two melon cultivars (Cucumis melo L.) under NaCl stress. Afr J Biotechnol 10:18381–18390CrossRef
    Yu Q, Rengel Z (1999) Drought and salinity differentially in fluence activities of superoxide dismutases in narrow-leafed lupins. Plant Sci 142:1–11CrossRef
    Zhou W, Leul M (1998) Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regul 26:41–47CrossRef
    Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445CrossRef PubMed
  • 作者单位:Peng Lei (1) (2)
    Zongqi Xu (1) (2)
    Jinfeng Liang (2)
    Xiaohui Luo (3)
    Yunxia Zhang (1) (2)
    Xiaohai Feng (1) (2)
    Hong Xu (1) (2)

    1. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, 211816, China
    2. College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
    3. Maanshan Soil and Fertilizer Station, Maanshan, 243000, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5087
文摘
Poly(γ-glutamic acid) (γ-PGA) is a new plant growth regulator with extensive application prospects. The effects of γ-PGA on rape seedlings under salt stress and the mechanism of action were investigated via hydroponic experiments. A salinity model was simulated by exposing the roots of rape seedlings to 100 mM NaCl solution for 48, 96 and 144 h. We determined that the growth of rape seedlings treated with NaCl was significantly inhibited. However, after the application of γ-PGA under NaCl stress, the dry weights of the entire plant, the shoot and the root were increased by 37.4, 38.8 and 34.1 %, respectively, at 144 h compared with those of the NaCl group. Moreover, the K+/Na+ ratio, proline content and antioxidant enzyme activity were all evidently enhanced, and the malondialdehyde content was significantly reduced in samples treated with γ-PGA. Proline metabolism regulation genes, including pyrroline-5-carboxylate synthetase genes (BnP5CS1 and BnP5CS2) and proline dehydrogenase gene (BnPDH), were also upregulated and downregulated by γ-PGA, respectively. Results showed that γ-PGA improved resistance to salt stress in rape seedlings by activating the proline synthesis pathway and promoting proline accumulation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700