Effect of the chitin binding domain deletion from Bacillus thuringiensis subsp. kurstaki chitinase Chi255 on its stability in Escherichia coli
详细信息    查看全文
  • 作者:F. Driss (1)
    A. Baanannou (1)
    S. Rouis (1)
    I. Masmoudi (1)
    N. Zouari (1)
    S. Jaoua (1)
  • 关键词:B. thuringiensis ; Chi255 ; Chitin binding domain ; Deletion ; Expression in E. coli
  • 刊名:Molecular Biotechnology
  • 出版年:2007
  • 出版时间:July 2007
  • 年:2007
  • 卷:36
  • 期:3
  • 页码:232-237
  • 全文大小:321KB
  • 参考文献:1. Gooday, G. W. (1990). The ecology of chitin decomposition. / Advances in Microbial Ecology, 11, 378-30.
    2. Henrissat, B. (1999). Classification of chitinases modules. / EXS, 87, 137-56.
    3. Henrissat, B., & Bairoch, A. (1993). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. / The Biochemical Journal, 293, 781-88.
    4. Jaoua, S., Zouari, N., Tounsi, S., & Ellouz, R. (1996). Study of particular delta-endotoxins produced by three recently isolated strains of / Bacillus thuringiensis. / FEMS Microbiology Letters, 145, 349-54.
    5. Barboza-Corona, J. E., Contreras, J. C., Velazquez-Robledo, R., Bautista-Justo, M., Gomez-Ramirez, M., Cruz-Camarrillo, R., & Ibarra, J. E. (1999). Selection of chitinolytic strains of / Bacillus thuringiensis. / Biotechnology Letters, 21, 1125-129. CrossRef
    6. Sampson, M. N., & Gooday, G. W. (1998). Involvement of chitinases of / Bacillus thuringiensis during pathogenesis in insects. / Microbiology, 144, 2189-194. CrossRef
    7. Wiwat, C., Thaithanun, S., Pantuwatana, S., & Bhumiratana, A. (2000). Toxicity of chitinase-producing / Bacillus thuringiensis sp. / kurstaki HD-1 toward / Plutella xylostella. / Journal of Invertebrate Pathology, 79, 270-77. CrossRef
    8. Thamthiankul, S., Suan-Ngay, S., Tantimavanich, S., & Panbangred, W. (2001). Chitinase from / Bacillus thuringiensis subsp. / pakistani. / Applied Microbiology and Biotechnology, 56, 395-01. CrossRef
    9. Liu, M., Cai, Q. X., Liu, H. Z., Zhang, B. H., Yan, J. P., & Yuan, Z. M. (2002). Chitinolytic activities in / Bacillus thuringiensis and their synergistic effects on larvicidal activity. / Journal of Applied Microbiology, 93, 374-79. CrossRef
    10. Lin, Y., & Xiong, G. (2004). Molecular cloning and sequence analysis of the chitinase gene from / Bacillus / thuringiensis serovar / alesti. / Biotechnology Letters, 26, 635-39. CrossRef
    11. Sneh, B., Schuster, S., & Gross, S. (1983). Improvement of the insecticidal activity of / Bacillus thuringiensis var. / entomocidus on larvae of / Spodoptera littoralis ( / Lepidoptera–Noctuidae) by addition of chitinolytic bacteria, a phagostimulant and a UV-protectant. / Zeitschrift Fur Angewandte Entomologie, 96, 77-3.
    12. Regev, A., Keller, M., Strizhov, N., Sheh, B., Prudovsky, E., Chet, I., Ginzberg, I., Koncz-Kalman, Z., Koncz, C., Shnell, J., & Zilberstein, A. (1996). Synergistic activity of a / Bacillus thuringiensis δ-endotoxin and a bacterial endochitinase against / Spodoptera littoralis larvae. / Applied and Environmental Microbiology, 62, 3581-586.
    13. Mabuchi, N., Hashizume, I., & Araki, Y. (2000). Characterization of chitinases excreted by / Bacillus cereus CH. / Canadian Journal of Microbiology, 46, 370-75. CrossRef
    14. Tantimavanich, S., Pantuwatana, S., Bhumiratana, A., & Panbangred, W. (1998). Multiple chitinase enzymes from a single gene of / Bacillus licheniformis TP-1. / Journal of Fermentation and Bioengineering, 85, 259-65. CrossRef
    15. Watanabe, T., Oyanagi, W., Suzuki, K., & Tanaka, H. (1990). Chitinase system of / Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. / Journal of Bacteriology, 172, 4017-022.
    16. Driss, F., Kallassy-Awad, M., Zouari, N., & Jaoua, S. (2005). Molecular characterization of a novel chitinase from / Bacillus thuringiensis subsp. / kurstaki. / Journal of Applied Microbiology, 99, 945-53. CrossRef
    17. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). / Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
    18. Manoil, C., & Beckwith, J. (1986). A genetic approach to analysing membrane protein topology. / Science, 233, 1403-408. CrossRef
    19. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. / Analytical Chemistry, / 31, 426-28. CrossRef
    20. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. / Analytical Biochemistry, 72, 248-54. CrossRef
    21. Barboza-Corona, J. E., Nieto-Mazzocco, E., Vela’zquez-Robledo, R., Salcedo-Harnandez, R., Bautista, M., Jime’nez, B., & Ibarra, J. E. (2003). Cloning, sequencing, and expression of the chitinase gene / chiA74 from / Bacillus thuringiensis. / Applied and Environmental Microbiology, 69, 1023-029. CrossRef
    22. Morimoto, K., Karita, S., Kimura, T., Sakka, K., & Ohmiya, K. (1997). Cloning, sequencing, and expression of the gene encoding / Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain. / Journal of Bacteriology, 179, 7306-314.
    23. Kuranda, M. J., & Robbins, P. W. (1991). Chitinase is required for cell separation during growth of / Saccharomyces serevisiae. / The Journal of Biological Chemistry, 266, 19758-9767.
    24. Watanabe, T., Ito, Y., Hachimoto, M., Sekine, S., & Tanaka, H. (1994). The role of the C-terminal domain and type III domains chitinase A-1 from / Bacillus circulans WL-12 in chitin degradation. / Journal of Bacteriology, 176, 4465-472.
    25. Whalon, M. E., & Wingerd, B. A. (2003). Bt: Mode of action and use. / Archieves of Insect Biochemistry and Physiology, 54, 200-11. CrossRef
  • 作者单位:F. Driss (1)
    A. Baanannou (1)
    S. Rouis (1)
    I. Masmoudi (1)
    N. Zouari (1)
    S. Jaoua (1)

    1. Laboratory of Biopesticides, Centre of Biotechnology of Sfax, P.O. Box ‘K-3038, Sfax, Tunisia
文摘
Bacillus thuringiensis subsp. kurstaki BUPM255 secretes a chitobiosidase Chi255 having an expected molecular weight of 70.665?kDa. When the corresponding gene, chi255, was expressed in E. coli, the active form, extracted from the periplasmic fraction of E. coli/pBADchi255, was of about 54?kDa, which suggested that Chi255 was excessively degraded by the action of E. coli proteases. Therefore, in vitro progressive C-terminal Chi255 deleted derivatives were constructed in order to study their stability and their activity in E. coli. Interestingly, when the chitin binding domain (CBD) was deleted from Chi255, an active form (Chi2555Δ5) of expected size of about 60?kDa was extracted from the E. coli periplasmic fraction, without the observation of any proteolytic degradation. Compared to Chi255, Chi255Δ5 exhibited a higher chitinase activity on colloidal chitin. Both of the enzymes exhibit activities at broad pH and temperature ranges with maximal enzyme activities at pH 5 and pH 6 and at temperatures 50°C and 40°C, respectively for Chi255 and Chi255Δ5. Thus, it was concluded that the C-terminal deletion of Chi255 CBD might be a nice tool for avoiding the excessive chitinase degradation, observed in the native chitinase, and for improving its activity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700