Use of hydrochemistry and environmental isotopes for assessment of groundwater resources in the intermediate aquifer of the Sfax basin (Southern Tunisia)
详细信息    查看全文
  • 作者:Zohra Hchaichi (1)
    Kamel Abid (1)
    Kamel Zouari (1)
  • 关键词:Tunisia ; Hydrogeochemical ; Dissolution ; Cation exchange ; Evaporation
  • 刊名:Carbonates and Evaporites
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:29
  • 期:2
  • 页码:177-192
  • 全文大小:
  • 参考文献:1. Abid K, Trabelsi R, Zouari K, Abidi B (2009) Caractérisation hydrogéochimique de la nappe du Continental Intercalaire (Sud tunisien) [Hydrogeochemical characterization of the Continental Intercalaire aquifer (southern Tunisia)]. J Sci Hydrol 54(3):526-37 CrossRef
    2. Abid K, Zouari K, Dulinski M, Chkir N, Abidi B (2010) Hydrologic and geologic factors controlling groundwater geochemistry in the Turonian aquifer (southern Tunisia)
    3. Appelo CAJ, Postma D (1994) Geochemistry, groundwater and pollution, 2nd edn. A.A. Balkema, Rotterdam
    4. Aravena R, Wassenaar LI, Plummer LN (1995) Estimating 14C groundwater ages in a methanogenic aquifer. Water Resour Res 31(9):2307-317 CrossRef
    5. Belgacem A, Kharroubi A, Bouri S, Abida H (2010) Contribution of geostatistical modelling to mapping groundwater level and aquifer geometry, case study of Sfax’s deep aquifer. Tunis Middle East J Sci Res 6(3):305-16
    6. Ben Akacha M (2001) Etude géologique de la région d’Agareb-Sfax : évolution géomor-phologique néotectonique et paléogéographique. DEA, Faculté des Sciences de Sfax, p 94
    7. Beni Akhy R (1994) Evolution et modélisation de la nappe phréatique urbaine de Sfax. Mémoire de DEA, Faculté des Sciences de Tunis
    8. Bennetts DA, Webb JA, Stone DJM, Hill DM (2006) Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. J Hydrol 323:178-92 CrossRef
    9. Bethke CM, Johnson TM (2008) Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci 36:121-52 CrossRef
    10. Bouaziz S (1994) Eude de la tectonique cassante dans la plate-forme et l’Atlas Saharien (Tunisie méridionale) : évolution des paléo-champs de contraintes et implication géodyna-mique. Thèse. Doc. Etat. Sc. Geol. Univ. Tunis II. p 485
    11. Burollet (1956) Contribution à l'étude Stratigraphique de la Tunisie Centrale, Annale des mines et de la Géologie 18:345
    12. Cartwright I (2010) Using groundwater geochemistry and environmental isotopes to assess the correction of 14C ages in a silicate-dominated aquifer system. J Hydrol 382(1-):174-87 CrossRef
    13. Castany G (1953) Les plissements quaternaires en Tunisie. Comptes Rendus Sommaires Société Géologique de France, Paris, pp 155-57
    14. Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton
    15. Coetsiers M, Walraevens K (2009) A new correction model for 14C ages in aquifers with complex geochemistry–application to the Neogene Aquifer, Belgium. Appl Geochem 24(5):768-76 CrossRef
    16. Craig H (1961) Isotopic variation in meteoric waters. Science 133:1702-703
    17. Custodio E (1987) Hydrogeochemistry and tracers. In: Custodio E (ed), Groundwater problems in coastal areas. Studies and reports in hydrology, vol 45. UNESCO, Paris, pp 213-69
    18. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436-38 CrossRef
    19. Dixon W, Chiswell B (1992) The use of hydrochemical sections to identify recharge areas and saline intrusions in alluvial aquifers, southeast Queensland, Australia. J Hydrol 130:299-38 CrossRef
    20. Edmunds WM, Guendouz AH, Mamou A, Moulla A, Shand P, Zouari K (2003) Groundwater evolution in the Continental Intercalaire Aquifer of southern Algeria and Tunisia; trace element and isotopic indicators. Appl Geochem 18:805-22 CrossRef
    21. El Batti and Andrieux (1977) Etude hydrogéologique et géophysique du secteur Wadrane. Rapport interne
    22. Faure G (1986) Principles of isotope geology. Wiley, New York
    23. Fedrigoni L, Krimissa M, Zouari K, Maliki A, Zuppi GM (2001) Origine de la minéralisation et comportement hydrogéochimique d’une nappe phréatique soumise à des contraintes naturelles et anthropiques sévères: exemple de la nappe de Djebeniana (Tunisie). Earth Planet Sci Lett 332:665-71
    24. Fontes J-C, Garnier J-M (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15(2):399-13 CrossRef
    25. Garcia MG, Del Hidalgo M, Blesa MA (2001) Geochemistry of groundwater in the alluvial plain of Tucumán province Argentina. Hydrogeol J 9(6):597-10 CrossRef
    26. Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the complex terminal aquifer in the Algerian Sahara. Hydrogeol J 11:483-95
    27. Hajjem A (1980) Etude hydrogéologique de la région de Sidi Abid. Rapport interne, vol 8. DRES, Tunis
    28. Kazemi AG, Lehr JH, Perrochet P (2008) Groundwater age. Wiley-Interscience, New York
    29. Maduabuchi C, Faye S, Maloszewski P (2006) Isotope evidence of palaeorecharge and palaeoclimate in the deep confined aquifers of the Chad Basin, NE Nigeria. Sci Total Environ 370:467-79 CrossRef
    30. Magaritz M, Nadler A, Koyumdjisky H, Dan N (1981) The use of Na/Cl ratio to trace solute sources in a semiarid zone. Water Resour Res 17:602-08 CrossRef
    31. Maliki A (2000) Etude hydrogéologique, hydrochimique et isotopique de la nappe profonde de Sfax (Tunisie), thèse, ENIS
    32. Maliki A, Krimissa M, Michelot JL, Zouari K (2000) Relation entre nappes superficielles et aquifère profond dans le bassin de Sfax (Tunisie). Earth Planet Sci 331:1-
    33. McLean W, Jankowski J, Lavitt N et al (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. In: Sililo O (ed) Groundwater, past achievement and future challenges. Balkema, Rotterdam, pp 567-73
    34. Mokrik R, Mazeika J, Baublyte A, Martma T (2008) The groundwater age in the Middle–Upper Devonian aquifer system, Lithuania. Hydrogeol J 17(4):871-89
    35. Petalas CP, Diamantis IB (1999) Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece. Hydrogeol J 7:305-16 CrossRef
    36. Petalas C, Pisinaras V, Gemitzi A, Tsihrintzis VA, Ouzounis K (2009) Current conditions of saltwater intrusion in the coastal Rhodope aquifer system, northeastern Greece. Desalination 237:22-1 CrossRef
    37. Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. EOS Trans Am Geophys Union 25:914-23 CrossRef
    38. Plummer LN, Jones BF, Truesdell AH (1976) WATEQF, a Fortan IV version of WATEQ, a computer program for calculating chemical equilibrium of natural waters. US Geol Surv Water Resources Invest 76:61
    39. Rahoui H, Koshel R (1980) Cartes des ressources en eau souterraine de la Tunisie à l’échelle du 1:200000. Feuille de Sbe?tla No. 14. Divisions des ressources en eau
    40. Richter BC, Kreitler CW (1993) Geochemical techniques for identifying sources of ground-water salinization. CRC Press, Boca Raton
    41. Rozanski K, Araguas–Araguas L, Gonfiantini R (1993) Isotopic patters in modern global precipitation. In: Swart PK et al (eds) Climate change in continental isotopic records. Geophysical Monograph Series, vol 78. AGU, Washington, pp 1-6 CrossRef
    42. Sacks LA, Tihansky AB (1996) Geochemical and isotopic composition of ground water, with emphasis on sources of sulfate, in the upper Floridan aquifer and intermediate aquifer system in Southwest Florida. Water-resources investigations reports, US Geol Surv, pp 96-146
    43. Tayech B (1984) Etudes palynologiques dans le Néogène du Cap Bon (Tunisie). Thèse de Doct. 3ème cycle. Unv. Claude Bernard, Lyon I
    44. Trabelsi R, Za?ri M, Smida H, Ben Dhia H (2005) Salinisation des nappes c?tières: cas de la nappe nord du Sahel de Sfax, Tunisie. C. R. Acad. Sci. Paris 337:515-24
    45. Trabelsi R, Kacem A, Zouari K, Rozanski K (2008) Quantifying regional groundwater flow between continental Intercalaire and Djeffara aquifers in southern Tunisia using isotope methods. Environ Geol 58:171-83 CrossRef
    46. Vengosh A (2003) Salinization and saline environments. In: Sherwood Lollar B (ed), Environmental geochemistry, Treatise in Geochemistry, vol 9. Elsevier Science, New York
    47. Vengosh A, Gert J, De Lange GJ, Starinsky A (1998) Boron isotope and geochemical evidence for the origin of Urania and Bannock brines at the eastern Mediterranean: effect of water–rock interactions. Geochim Cosmochim Acta 62:3221-228 CrossRef
    48. Vengosh A, Kloppmann W, Marie A, Livshitz Y, Gutierrez A, Banna M, Guerrot C, Pankratov I, Ranan H (2005) Sources of salinity and boron in the Gaza Strip: natural contaminant flow in the southern Mediterranean Coastal aquifer. Water Resour Res 41:W01013. doi:10.1029/2004WR003344 CrossRef
    49. Vengosh A, Hening S, Ganor J, Mayer B, Weyhenmeyer CE, Bullen TD, Paytan A (2007) New isotopic evidence for the origin of groundwater from the Nubian Sandstone Aquifer in the Negev, Israel. Appl Geochem 22:1052-073 CrossRef
    50. Zébidi H (1989) Hydrogéologie de la nappe profonde de Sfax. Rapport D.G.R.E. Tunis, p 27
  • 作者单位:Zohra Hchaichi (1)
    Kamel Abid (1)
    Kamel Zouari (1)

    1. école Nationale d’Ingénieurs de Sfax, BP 1173, 3038, Sfax, Tunisia
  • ISSN:1878-5212
文摘
Groundwaters from the intermediate aquifer of Sfax basin have been investigated using chemical tracers and environmental isotopes to reveal the hydrogeological features of this system and characterize the dynamics of groundwater salinization in this sector. The origin of salinity in the studied aquifer was investigated based on the chemical analyses of 30 groundwater samples. Groundwater is characterized by Na–Cl and Na–SO4 water types. The saturation indices for calcite and gypsum, and binary diagrams of different ions showed that the main hydrogeochemical processes were the dissolution of carbonates (mainly calcite scattered through the reservoir rocks), the dissolution of evaporites (halite, gypsum and anhydrite) and the cation exchange processes. The isotopic composition investigation allowed the definition of two groups. The first group is represented by groundwater with the highest oxygen-18 content (δ18O ranges between ?.36 and ?.22?- and δ2H ranges between ?9.2 and ?6?-. The high δ18O values in this group can be attributed to the evaporation effect. The second group includes the most depleted waters (δ18O varies between ?.84 and ?.79?- and δ2H varies between ?2.4 and ?6.5?-. The combined analyses of stable isotopes and major ions (Cl?/sup>) showed that mixing between old and recent water and evaporation were the main processes explaining the variation of salinity of the intermediate aquifer of the Sfax basin.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700