Photocatalytic degradation of azo dye using nano-ZrO2/UV/Persulfate: Response surface modeling and optimization
详细信息    查看全文
  • 作者:Mahsa Moradi ; Farshid Ghanbari…
  • 关键词:Nano ; ZrO2 ; Synthetic Dye ; Sulfate Radical ; Response Surface Method
  • 刊名:Korean Journal of Chemical Engineering
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:33
  • 期:2
  • 页码:539-546
  • 全文大小:1,042 KB
  • 参考文献:1.E. Chatzisymeon, N. P. Xekoukoulotakis, A. Coz, N. Kalogerakis and D. Mantzavinos, J. Hazard. Mater., 137, 998 (2006).CrossRef
    2.X.-R. Xu and X.-Z. Li, Sep. Purif. Technol., 72, 105 (2010).CrossRef
    3.F. E. Fernades Rêgo, A. M. Sales Solano, I. C. da Costa Soares, D.R. da Silva, C.A. Martinez Huitle and M. Panizza, J. Environ. Chem. Eng., 2, 875 (2014).CrossRef
    4.F. Ghanbari and M. Moradi, J. Environ. Chem. Eng., 3, 499 (2015).CrossRef
    5.A. Eslami, M. Moradi, F. Ghanbari and F. Mehdipour, J. Environ. Health Sci. Eng., 11, 1 (2013).CrossRef
    6.V. Augugliaro, M. Litter, L. Palmisano and J. Soria, J. Photochem. Photobiol., C, 7, 127 (2006).CrossRef
    7.A. Yazdanbakhsh, F. Mehdipour, A. Eslami, H. S. Maleksari and F. Ghanbari, Water Sci. Technol., 71, 1097 (2015).CrossRef
    8.M.N. Chong, B. Jin, C.W.K. Chow and C. Saint, Water Res., 44, 2997 (2010).CrossRef
    9.M. R. Hoffmann, S. T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995).CrossRef
    10.U. I. Gaya and A. H. Abdullah, J. Photochem. Photobiol., C, 9, 1 (2008).CrossRef
    11.B. Gözmen, Environ. Prog. Sustain. Energy, 31, 296 (2012).CrossRef
    12.R. Hazime, Q. H. Nguyen, C. Ferronato, A. Salvador, F. Jaber and J.M. Chovelon, Appl. Catal., B, 144, 286 (2014).CrossRef
    13.Y. F. Rao, L. Qu, H. Yang and W. Chu, J. Hazard. Mater., 268, 23 (2014).CrossRef
    14.S. Moghaddam, M. Rasoulifard, M. Vahedpour and M. Eskandarian, Korean J. Chem. Eng., 31, 1577 (2014).CrossRef
    15.K. Govindan, M. Raja, M. Noel and E. J. James, J. Hazard. Mater., 272, 42 (2014).CrossRef
    16.Y.-T. Lin, C. Liang and J.-H. Chen, Chemosphere, 82, 1168 (2011).CrossRef
    17.H. Eskandarloo, A. Badiei and M. A. Behnajady, Desal. Water Treat., 1 (2014).
    18.B. Tyagi, K. Sidhpuria, B. Shaik and R.V. Jasra, Ind. Eng. Chem. Res., 45, 8643 (2006).CrossRef
    19.A.T. Nair, A.R. Makwana and M. M. Ahammed, Water Sci. Technol., 69, 464 (2014).CrossRef
    20.APHA, Standard methods for the examination of water and wastewater, APHA, Washington DC (1999).
    21.L.-A. Lu, Y.-S. Ma, M. Kumar and J.-G. Lin, Sep. Purif. Technol., 81, 325 (2011).CrossRef
    22.P. Kajitvichyanukul and N. Suntronvipart, J. Hazard. Mater., 138, 384 (2006).CrossRef
    23.R.Y. Hong, J. H. Li, L. L. Chen, D.Q. Liu, H. Z. Li, Y. Zheng and J. Ding, Powder Technol., 189, 426 (2009).CrossRef
    24.F. Torrades and J. García-Montaño, Dyes Pigm., 100, 184 (2014).CrossRef
    25.R. Davarnejad, M. Mohammadi and A.F. Ismail, J. Water Proc. Eng., 3, 18 (2014).CrossRef
    26.S. Chun, S. An, S. Lee, J. Kim and S. Chang, Korean J. Chem. Eng., 31, 994 (2014).CrossRef
    27.F. Rasouli, S. Aber, D. Salari and A.R. Khataee, Appl. Clay Sci., 87, 228 (2014).CrossRef
    28.K. Cruz-González, O. Torres-Lopez, A. M. García-León, E. Brillas, A. Hernández-Ramírez and J. M. Peralta-Hernández, Desalination, 286, 63 (2012).CrossRef
    29.A. R. Khataee, M. Zarei and A. R. Khataee, CLEAN - Soil, Air, Water, 39, 482 (2011).CrossRef
    30.M. Moradi and F. Ghanbari, J. Water Proc. Eng., 4, 67 (2014).CrossRef
    31.A. K. Abdessalem, N. Oturan, N. Bellakhal, M. Dachraoui and M. A. Oturan, Appl. Catal., B, 78, 334 (2008).CrossRef
    32.J. Yan, M. Lei, L. Zhu, M.N. Anjum, J. Zou and H. Tang, J. Hazard. Mater., 186, 1398 (2011).CrossRef
    33.J. Saien and A.R. Soleymani, J. Hazard. Mater., 144, 506 (2007).CrossRef
    34.Y.-L. Song, J.-T. Li and B. Bai, Water, Air, Soil Pollut., 213, 311 (2010).CrossRef
    35.D. Chakrabortty and S. S. Gupta, J. Environ. Sci., 25, 1034 (2013).CrossRef
    36.Y. Ding, L. Zhu, N. Wang and H. Tang, Appl. Catal., B, 129, 153 (2013).CrossRef
    37.G. P. Anipsitakis and D.D. Dionysiou, Environ. Sci. Technol., 37, 4790 (2003).CrossRef
    38.N. Jaafarzadeh, F. Ghanbari and M. Moradi, Korean J. Chem. Eng., 32, 458 (2015).CrossRef
    39.F. Ghanbari, M. Moradi and M. Manshouri, J. Environ. Chem. Eng., 2, 1846 (2014).CrossRef
    40.M. Kobya and S. Delipinar, J. Hazard. Mater., 154, 1133 (2008).CrossRef
  • 作者单位:Mahsa Moradi (1) (2)
    Farshid Ghanbari (3)
    Mohammad Manshouri (4)
    Kambiz Ahmadi Angali (5)

    1. Department of Environmental Health Engineering, School of Paramedicine and Public Health, Semnan University of Medical Sciences, Semnan, Iran
    2. Department of Environmental Health Engineering, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
    3. Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
    4. Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
    5. Department of Statistics and Epidemiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Industrial Chemistry and Chemical Engineering
    Catalysis
    Materials Science
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1975-7220
文摘
Dyes have always been considered in the context of recalcitrant organic pollutants in water. The present research has focused on the decolorization of Direct Blue 71 (DB71) using photocatalysis process of nano-ZrO2/UV/ Persulfate. Response surface method with central composite design was applied to determine the effects of four main factors (time, ZrO2 dosage, persulfate dosage and pH) on decolorization of DB71. The results indicated that the obtained quadratic model had a high R-squared coefficient based on the analysis of variance (ANOVA). Time had the highest effect (45.5%) on decolorization of DB71. The optimum condition predicted for complete decolorization was pH=7, 0.4 g ZrO2, 0.75 mM persulfate and 40 min reaction time. Verification experiments confirmed that there was good agreement between the experimental and predicted responses. The studied photocatalytic process could oxidize and destruct the structure of the DB71, and average oxidation state (AOS) significantly increased from −1.5 to +1.33, indicating the presence of more oxidized by-products and, consequently, improvement of biodegradability. The quenching tests showed that sulfate radical was the major agent in DB71 decolorization. It can be concluded that nano-ZrO2/ UV/Persulfate is a very effective process for decolorization of colored wastewater. Keywords Nano-ZrO2 Synthetic Dye Sulfate Radical Response Surface Method

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700