An Experimental Study on the Slippage Effect of Gas Flow in a Compact Rock
详细信息    查看全文
  • 作者:H. L. Wang ; W. Y. Xu ; M. Cai ; J. Zuo
  • 关键词:Compact rock ; Gas flow ; Gas slippage effect ; Permeability ; Knudsen number
  • 刊名:Transport in Porous Media
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:112
  • 期:1
  • 页码:117-137
  • 全文大小:1,235 KB
  • 参考文献:Agarwal, R.K., Keon-Young, Y., Balakrishnan, R.: Beyond Navier–Stokes: Burnett equations for flows in the continuum–transition regime. Phys. Fluids 13, 3061–3085 (2001)CrossRef
    Baehr, A.L., Hult, M.F.: Evaluation of unsaturated zone air permeability through pneumatic tests. Water Resour. Res. 27(10), 2605–2617 (1991)CrossRef
    Beskok, A., Karniadakis, G.E.: A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys. Eng. 3(1), 43–77 (1999)CrossRef
    Bird, G.A.: Molecular gas dynamics and the direct simulation of gas flows. In: Bird, G.A. (ed.) Oxford Engineering Science Series. Oxford University Press, Oxford (1994)
    Boulin, P.F., Bretonnier, P., Glandand, N., Lombard, J.M.: Contribution of the steady-state method to water permeability measurement in very low permeability porous media. Oil Gas Sci. Technol. 67, 387–401 (2012)CrossRef
    Brace, W.F., Walsh, J.B., Frangos, W.T.: Permeability of granite under high pressure. J. Geophys. Res. 73(6), 2225–2236 (1968)CrossRef
    Croise’, J., Schlickenrieder, L., Marschall, P., Boisson, J., Vogel, P., Yamamoto, S.: Hydrogeological investigations in a low permeability claystone formation: the Mont Terri Rock Laboratory. Phys. Chem. Earth 29, 3–15 (2004)CrossRef
    Cosenza, P., Ghoreychi, M.: Effects of very low permeability on the long-term evolution of a storage cavern in rock salt. Int. J. Rock Mech. Min. 36(4), 527–533 (1999)CrossRef
    Civan, F.: Effective correlation of apparent gas permeability in tight porous media. Transp. Porous Media 82, 375–384 (2010)CrossRef
    Civan, F.: Relating permeability to pore connectivity using a power-law flow unit equation. Soc. Petrophys. Well Log Anal. 43(6), 457–476 (2002)
    David, C., Wong, T.F., Zhu, W., Zhang, J.: Laboratory measurement of compaction-induced permeability change in porous rocks: implication for the generation and maintenance of pore pressure excess in the crust. Pure Appl. Geophys. 143, 425–456 (1994)CrossRef
    Davy, C.A., Skoczylas, F., Barnichon, J.D., Lebon, P.: Permeability of macro-cracked argillite under confinement: gas and water testing. Phys. Chem. Earth 32, 667–680 (2007)CrossRef
    Florence, F.A., Rushing, J.A., Newsham, K.E., Blasingame, T.A.: Improved permeability prediction relations for low permeability sands. In: Rocky Mountain Oil & Gas Technology Symposium, pp. 1–18. Denver, Colorado, U.S.A. 16–18 April (2007)
    Heid, J.G., McMahon, J.J., Nielsen, R.F., Yuster, S.T.: Study of the permeability of rocks to homogenous fluids. Drilling and Production Practice, pp. 230–246. American Petroleum Institute, New York (1950)
    Javadpour, F., Fisher, D., Unsworth, M.: Nanoscale gas flow in shale gas sediments. J. Can. Petrol. Technol. 46(10), 55–61 (2007)
    Jones, F.O., Owens, W.W.: A laboratory study of low permeability gas sands. J. Petrol. Technol. 32(09), 1631–1640 (1980)CrossRef
    Klinkenberg, L.J.: The permeability of porous media to liquids and gases. API Drill. Prod. Pract. pp. 200–213. American Petroleum Institute, New York (1941)
    Knudsen, M.: Die Gesetze der Molukularstrommung und der inneren. Reibungsstrornung der Gase durch Rohren. Ann. Phys. 28, 75–130 (1909)CrossRef
    Lilley, C.R., Sader, J.E.: Velocity profile in the Knudsen layer according to the Boltzmann equation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 464(2096), pp. 2015–2035. The Royal Society (2008)
    Loosveldt, H., Lafhaj, Z., Skoczylas, F.: Experimental study of gas and liquid permeability of a mortar. Cem. Concr. Res. 32, 1357–1363 (2002)CrossRef
    Ma, J.S., Sanchez, J.P., Wu, K., Couples, G.D., Jiang, Z.Y.: A pore network model for simulating non-ideal gas flow in micro- and nano-porous materials. Fuel 116, 498–508 (2014)CrossRef
    Maxwell, J.C.: On stresses in rarefied gases arising from inequalities of temperature. Philos. Trans. R. Soc. Lond. 170, 231–256 (1867)CrossRef
    Reda, D.C.: Slip-flow experiments in welded tuff: the Knudson diffusion problem. In: Chin-Fu, Tsang (ed.) Coupled Processes Associated with Nuclear Waste Repositories, pp. 485–493. Academic Press INC, London (1987)CrossRef
    Sampath, K., Keighin, C.: Factors affecting gas slippage in tight sandstones of cretaceous age in the Uinta basin. J. Petrol. Technol. 34(11), 2715–2720 (1982)
    Schaaf, S.A., Chambre, P.L.: Flow of Rarefied Gases. Princeton University Press, Princeton (1961)
    Skoczylas, F., Henry, J.P.: A study of the intrinsic permeability of granite to gas. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 32(2), 171–179 (1995)CrossRef
    Tsang, C.F., Bernierb, F., Davies, C.: Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays-in the context of radioactive waste disposal. Int. J. Rock Mech. Min. Sci. 42, 109–125 (2005)CrossRef
    Walder, J., Nur, A.: Porosity reduction and crustal pore pressure development. J. Geophys. Res. 89, 11539–11548 (1984)CrossRef
    Wang, H.L., Xu, W.Y., Shao, J.F., Skoczylas, F.: The gas permeability properties of low-permeability rock in the process of triaxial compression test. Mater. Lett. 116(1), 386–388 (2014a)
    Wang, H.L., Xu, W.Y., Shao, J.F.: Experimental researches on hydro-mechanical properties of altered rock under confining pressures. Rock Mech. Rock Eng. 47, 485–493 (2014b)
    Wang, H.L., Xu, W.Y., Zuo, J.: Compact rock material gas permeability properties. Physica B: Condensed Matter. 449(9), 10–18 (2014c)
    Wu, Y.S., Pruess, K., Persoff, P.: Gas flow in porous media with Klinkenberg effects. Transp. Porous Media 32, 117–137 (1998)CrossRef
    Xie, S.Y., Shao, J.F.: Elastoplastic deformation of a porous rock and water interaction. Int. J. Plast. 22, 2195–2225 (2006)CrossRef
    Ziarani, A.S., Aguilera, R.: Knudsen’s permeability correction for tight porous media. Transp. Porous Med. 91, 239–260 (2012)CrossRef
  • 作者单位:H. L. Wang (1) (2)
    W. Y. Xu (3)
    M. Cai (4)
    J. Zuo (3)

    1. Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing, 210098, Jiangsu, China
    2. Department of Civil Engineering, University of Toronto, Toronto, M5S 1A4, Canada
    3. Institutes of Geotechnical Engineering, Hohai University, Nanjing, 210098, China
    4. Bharti School of Engineering, Laurentian University, Sudbury, P3E 2C6, Canada
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Industrial Chemistry and Chemical Engineering
    Civil Engineering
    Hydrogeology
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Netherlands
  • ISSN:1573-1634
文摘
Gas flow in small pore throats in compact rocks is usually affected by the gas slippage effect due to the dense structure and low porosity of the rocks. In this study, permeability and porosity of two granitic gneiss specimens under different pore and confining pressures are measured. Petrographic studies are also performed using X-ray diffraction, optical microscopy, and scanning electron microscopy coupled with an energy-dispersive spectrometer. Test data indicate that the gas flow in the compact rock does not follow Darcy’s law due to the effect of gas slippage, and the measured permeability needs to be corrected by the gas slippage effect. The test results show that the gas slippage effect increases subsequently when the pore pressure is low, which leads to the measured permeability higher than the absolute permeability. The influence of confining pressure on the impact rate of the slippage effect appears to approach an upper limit symptomatically. It is found that a power law describes well the relationship between the absolute permeability and the effective porosity. A correlation of the slippage factor and the absolute permeability is provided. When the confining pressure is high and the pore pressure is low, the flows are slip flow and transitional flow and traditional fluid dynamics N–S equations are not applicable and Knudsen’s diffusion equations should be used.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700