Molecular imaging of prostate cancer: translating molecular biology approaches into the clinical realm
详细信息    查看全文
  • 作者:Hebert Alberto Vargas (1)
    Jan Grimm (1) (2)
    Olivio F. Donati (1) (3)
    Evis Sala (1)
    Hedvig Hricak (1)

    1. Department of Radiology
    ; Memorial Sloan Kettering Cancer Center ; 1275 York Av. Room C-278 ; New York ; NY ; 10065 ; USA
    2. Program in Molecular Pharmacology and Chemistry
    ; Memorial Sloan Kettering CancerCenter ; 1275 York Avenue ; New York ; USA
    3. Institute of Diagnostic and Interventional Radiology
    ; University Hospital Zurich ; Zurich ; Switzerland
  • 关键词:Prostate cancer ; Molecular imaging ; MRI/PET ; Optical imaging ; Cerenkov imaging
  • 刊名:European Radiology
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:25
  • 期:5
  • 页码:1294-1302
  • 全文大小:5,115 KB
  • 参考文献:1. Elias, DR, Thorek, DLJ, Chen, AK, Czupryna, J, Tsourkas, A (2008) In vivo imaging of cancer biomarkers using activatable molecular probes. Cancer Biomarkers 4: pp. 287-305
    2. Thorek, DL, Grimm, J (2012) Enzymatically activatable diagnostic probes. Curr Pharm Biotechnol 13: pp. 523-536 CrossRef
    3. Ruggiero, A, Holland, JP, Lewis, JS, Grimm, J (2010) Cerenkov luminescence imaging of medical isotopes. J Nucl Med 51: pp. 1123-1130 CrossRef
    4. Huggins, C, Hodges, CV (2002) Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol 168: pp. 9-12 CrossRef
    5. Azzouni, F, Mohler, J (2012) Biology of castration-recurrent prostate cancer. Urol Clin N Am 39: pp. 435-452 CrossRef
    6. Scher, HI, Beer, TM, Higano, CS (2010) Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet 375: pp. 1437-1446 CrossRef
    7. Larson, SM, Morris, M, Gunther, I (2004) Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45: pp. 366-373
    8. Beattie, BJ, Smith-Jones, PM, Jhanwar, YS (2010) Pharmacokinetic assessment of the uptake of 16beta-18F-fluoro-5alpha-dihydrotestosterone (FDHT) in prostate tumors as measured by PET. J Nucl Med 51: pp. 183-192 CrossRef
    9. Zanzonico, PB, Finn, R, Pentlow, KS (2004) PET-based radiation dosimetry in man of 18F-fluorodihydrotestosterone, a new radiotracer for imaging prostate cancer. J Nucl Med 45: pp. 1966-1971
    10. Fox, JJ, Autran-Blanc, E, Morris, MJ (2011) Practical approach for comparative analysis of multilesion molecular imaging using a semiautomated program for PET/CT. J Nucl Med 52: pp. 1727-1732 CrossRef
    11. Vargas, HA, Wassberg, C, Fox, JJ (2014) Bone metastases in castration-resistant prostate cancer: associations between morphologic CT patterns, glycolytic activity, and androgen receptor expression on PET and overall survival. Radiology 271: pp. 220-229 CrossRef
    12. Su, SL, Huang, IP, Fair, WR, Powell, CT, Heston, WDW (1995) Alternatively spliced variants of prostate-specific membrane antigen Rna - ratio of expression as a potential measurement of progression. Cancer Res 55: pp. 1441-1443
    13. Mannweiler, S, Amersdorfer, P, Trajanoski, S, Terrett, JA, King, D, Mehes, G (2009) Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol Oncol Res 15: pp. 167-172 CrossRef
    14. Minner, S, Wittmer, C, Graefen, M (2011) High level PSMA expression is associated with early PSA recurrence in surgically treated prostate cancer. Prostate 71: pp. 281-288 CrossRef
    15. Chikkaveeraiah, BV, Bhirde, A, Malhotra, R, Patel, V, Gutkind, JS, Rusling, JF (2009) Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 81: pp. 9129-9134 CrossRef
    16. Lapidus, RG, Tiffany, CW, Isaacs, JT, Slusher, BS (2000) Prostate-specific membrane antigen (PSMA) enzyme activity is elevated in prostate cancer cells. Prostate 45: pp. 350-354 CrossRef
    17. Chen, Y, Dhara, S, Banerjee, SR (2009) A low molecular weight PSMA-based fluorescent imaging agent for cancer. Biochem Biophys Res Commun 390: pp. 624-629 CrossRef
    18. Hillier, SM, Maresca, KP, Femia, FJ (2009) Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Cancer Res 69: pp. 6932-6940 CrossRef
    19. Haseman, MK, Reed, NL, Rosenthal, SA (1996) Monoclonal antibody imaging of occult prostate cancer in patients with elevated prostate-specific antigen. Positron emission tomography and biopsy correlation. Clin Nucl Med 21: pp. 704-713 CrossRef
    20. Babaian, RJ, Sayer, J, Podoloff, DA, Steelhammer, LC, Bhadkamkar, VA, Gulfo, JV (1994) Radioimmunoscintigraphy of pelvic lymph nodes with 111indium-labeled monoclonal antibody CYT-356. J Urol 152: pp. 1952-1955
    21. Polascik, TJ, Manyak, MJ, Haseman, MK (1999) Comparison of clinical staging algorithms and 111indium-capromab pendetide immunoscintigraphy in the prediction of lymph node involvement in high risk prostate carcinoma patients. Cancer 85: pp. 1586-1592 CrossRef
    22. Elgamal, AA, Holmes, EH, Su, SL (2000) Prostate-specific membrane antigen (PSMA): current benefits and future value. Semin Surg Oncol 18: pp. 10-16 CrossRef
    23. Holland, JP, Divilov, V, Bander, NH, Smith-Jones, PM, Larson, SM, Lewis, JS (2010) 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med 51: pp. 1293-1300 CrossRef
    24. Ruggiero, A, Holland, JP, Hudolin, T (2011) Targeting the internal epitope of prostate-specific membrane antigen with 89Zr-7E11 immuno-PET. J Nucl Med 52: pp. 1608-1615 CrossRef
    25. Holland, JP, Caldas-Lopes, E, Divilov, V (2010) Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using Zr-DFO-trastuzumab. PLoS One 5: pp. e8859 CrossRef
    26. Liu, H, Moy, P, Kim, S (1997) Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 57: pp. 3629-3634
    27. Thorek, D, Robertson, R, Bacchus, WA (2012) Cerenkov imaging - a new modality for molecular imaging. Am J Nucl Med Mol Imaging 2: pp. 163-173
    28. Wright, GL, Grob, BM, Haley, C (1996) Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 48: pp. 326-334 CrossRef
    29. Evans, MJ, Smith-Jones, PM, Wongvipat, J (2011) Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci U S A 108: pp. 9578-9582 CrossRef
    30. Barinka, C, Rovenska, M, Mlcochova, P (2007) Structural insight into the pharmacophore pocket of human glutamate carboxypeptidase II. J Med Chem 50: pp. 3267-3273 CrossRef
    31. Mease, RC, Dusich, CL, Foss, CA (2008) N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res 14: pp. 3036-3043 CrossRef
    32. Cho, SY, Gage, KL, Mease, RC (2012) Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med 53: pp. 1883-1891 CrossRef
    33. Barrett, JA, Coleman, RE, Goldsmith, SJ (2013) First-in-man evaluation of 2 high-affinity PSMA-avid small molecules for imaging prostate cancer. J Nucl Med 54: pp. 380-387 CrossRef
    34. Chen, Z, Penet, MF, Nimmagadda, S (2012) PSMA-targeted theranostic nanoplex for prostate cancer therapy. ACS Nano 6: pp. 7752-7762 CrossRef
    35. Grimm, J, Scheinberg, DA (2011) Will nanotechnology influence targeted cancer therapy?. Semin Radiat Oncol 21: pp. 80-87 CrossRef
    36. Nakajima, T, Mitsunaga, M, Bander, NH, Heston, WD, Choyke, PL, Kobayashi, H (2011) Targeted, activatable, in vivo fluorescence imaging of prostate-specific membrane antigen (PSMA) positive tumors using the quenched humanized J591 antibody-indocyanine green (ICG) conjugate. Bioconjug Chem 22: pp. 1700-1705 CrossRef
    37. Liu, T, Wu, LY, Hopkins, MR, Choi, JK, Berkman, CE (2010) A targeted low molecular weight near-infrared fluorescent probe for prostate cancer. Bioorg Med Chem Lett 20: pp. 7124-7126 CrossRef
    38. Grimm, J, Kirsch, DG, Windsor, SD (2005) Use of gene expression profiling to direct in vivo molecular imaging of lung cancer. Proc Natl Acad Sci U S A 102: pp. 14404-14409 CrossRef
    39. Dam, GM, Themelis, G, Crane, LM (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 17: pp. 1315-1319 CrossRef
    40. Schaafsma, BE, Mieog, JS, Hutteman, M (2011) The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 104: pp. 323-332 CrossRef
    41. Schaafsma, BE, Vorst, JR, Gaarenstroom, KN (2012) Randomized comparison of near-infrared fluorescence lymphatic tracers for sentinel lymph node mapping of cervical cancer. Gynecol Oncol 127: pp. 126-130 CrossRef
    42. Song, KM, Lee, S, Ban, C (2012) Aptamers and their biological applications. Sensors (Basel) 12: pp. 612-631 CrossRef
    43. Lupold, SE, Hicke, BJ, Lin, Y, Coffey, DS (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62: pp. 4029-4033
    44. Farokhzad, OC, Cheng, J, Teply, BA (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103: pp. 6315-6320 CrossRef
    45. Chu, TC, Marks, JW, Lavery, LA (2006) Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res 66: pp. 5989-5992 CrossRef
    46. Tong, R, Coyle, VJ, Tang, L, Barger, AM, Fan, TM, Cheng, J (2010) Polylactide nanoparticles containing stably incorporated cyanine dyes for in vitro and in vivo imaging applications. Microsc Res Tech 73: pp. 901-909 CrossRef
    47. Yu, MK, Kim, D, Lee, IH, So, JS, Jeong, YY, Jon, S (2011) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7: pp. 2241-2249 CrossRef
    48. Rockey, WM, Huang, L, Kloepping, KC, Baumhover, NJ, Giangrande, PH, Schultz, MK (2011) Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging. Bioorg Med Chem 19: pp. 4080-4090 CrossRef
    49. Thompson, IM, Pauler, DK, Goodman, PJ (2004) Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0ng per milliliter. N Engl J Med 350: pp. 2239-2246 CrossRef
    50. Lilja, H, Ulmert, D, Vickers, AJ (2008) Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer 8: pp. 268-278 CrossRef
    51. Ulmert, D, Evans, MJ, Holland, JP (2012) Imaging androgen receptor signaling with a radiotracer targeting free prostate-specific antigen. Cancer Discov 2: pp. 320-327 CrossRef
    52. Stege, RH, Tribukait, B, Carlstrom, KAM, Grande, M, Pousette, AHL (1999) Tissue PSA from fine-needle biopsies of prostatic carcinoma as related to serum PSA, clinical stage, cytological grade, and DNA ploidy. Prostate 38: pp. 183-188 CrossRef
    53. Lilja, H (1985) A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein. J Clin Invest 76: pp. 1899-1903 CrossRef
    54. Lepin, EJ, Leyton, JV, Zhou, Y (2010) An affinity matured minibody for PET imaging of prostate stem cell antigen (PSCA)-expressing tumors. Eur J Nucl Med Mol Imaging 37: pp. 1529-1538 CrossRef
    55. Ren, J, Wang, F, Wei, G (2012) MRl of prostate cancer antigen expression for diagnosis and immunotherapy. PLoS One 7: pp. e38350 CrossRef
    56. Gao, X, Luo, Y, Wang, Y (2012) Prostate stem cell antigen-targeted nanoparticles with dual functional properties: in vivo imaging and cancer chemotherapy. Int J Nanomedicine 7: pp. 4037-4051 CrossRef
    57. Smith, CJ (2003) Radiochemical investigations of gastrin-releasing peptide receptor-specific [(99m)Tc(X)(CO)3-Dpr-Ser-Ser-Ser-Gln-Trp-Ala-Val-Gly-His-Leu-Met-(NH2)] in PC-3, tumor-bearing, rodent models: syntheses, radiolabeling, and in vitro/in vivo studies where Dpr鈥?鈥?,3-diaminopropionic acid and X鈥?鈥塇2O or P(CH2OH)3. Cancer Res (Baltimore) 63: pp. 4082-4088
    58. Vincentis, G, Remediani, S, Varvarigou, AD (2004) Role of 99mTc-bombesin scan in diagnosis and staging of prostate cancer. Cancer Biother Radiopharm 19: pp. 81-84 CrossRef
    59. Scopinaro, F, Vincentis, G, Varvarigou, AD (2003) 99mTc-bombesin detects prostate cancer and invasion of pelvic lymph nodes. Eur J Nucl Med Mol Imaging 30: pp. 1378-1382 CrossRef
    60. Honer, M, Mu, L, Stellfeld, T (2011) 18F-labeled bombesin analog for specific and effective targeting of prostate tumors expressing gastrin-releasing peptide receptors. J Nucl Med 52: pp. 270-278 CrossRef
    61. Cai, QY, Yu, P, Besch-Williford, C (2012) Near-infrared fluorescence imaging of gastrin releasing peptide receptor targeting in prostate cancer lymph node metastases. Prostate.
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Imaging and Radiology
    Diagnostic Radiology
    Interventional Radiology
    Neuroradiology
    Ultrasound
    Internal Medicine
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1084
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700