Nanoscale mixing during double-flame spray synthesis of heterostructured nanoparticles
详细信息    查看全文
  • 作者:H. K. Grossmann (1)
    T. Grieb (1)
    F. Meierhofer (1)
    M. J. Hodapp (1) (2)
    D. Noriler (2)
    A. Gr枚hn (3)
    H. F. Meier (2)
    U. Fritsching (1)
    K. Wegner (3)
    L. M盲dler (1)

    1. Foundation Institute of Materials Science (IWT)
    ; Department of Production Engineering ; University of Bremen ; BadgasteinerStrasse3 ; 28359 ; Bremen ; Germany
    2. Department of Chemical Engineering
    ; Regional University of Blumenau (FURB) ; S茫o Paulo St. ; 3250 ; Blumenau ; SC ; 89030鈥?00 ; Brazil
    3. Particle Technology Laboratory
    ; Institute of Process Engineering ; Department of Mechanical and Process Engineering ; Swiss Federal Institute of Technology (ETH) Z眉rich ; Sonneggstrasse3 ; 8092 ; Zurich ; Switzerland
  • 关键词:Double ; flame spray pyrolysis ; Multicompound material ; Degree of mixing ; Flame temperature profiles ; Computational fluid dynamics (CFD) ; Modeling and simulation
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:17
  • 期:4
  • 全文大小:1,306 KB
  • 参考文献:1. Bamwenda, GR, Tsubota, S, Nakamura, T, Haruta, M (1997) The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal Lett 44: pp. 83-87 CrossRef
    2. Benson, JE, Boudart, M (1965) Hydrogen-oxygen titration method for the measurement of supported platinum surface areas. J Catal 4: pp. 704 CrossRef
    3. Bhadeshia, HKDH (2000) Mechanically alloyed metals. Mater Sci Technol 16: pp. 1404-1411 CrossRef
    4. Birkenstock J, Fischer RX, Messner T (2010) BRASS, The Bremen Rietveld analysis and structure suite, Ver. 2.2 beta. University of Bremen, Bremen
    5. Buchel, R, Strobel, R, Krumeich, F, Baiker, A, Pratsinis, SE (2009) Influence of Pt location on BaCO3 or Al2O3 during NOx storage reduction. J Catal 261: pp. 201-207 CrossRef
    6. Buchel, R, Pratsinis, SE, Baiker, A (2012) Mono- and bimetallic Rh and Pt NSR-catalysts prepared by controlled deposition of noble metals on support or storage component. Appl Catal B 113: pp. 160-171 CrossRef
    7. Buesser, B, Gr枚hn, AJ, Pratsinis, SE (2011) Sintering rate and mechanism of TiO2 nanoparticles by molecular dynamics. J Phys Chem C 115: pp. 11030-11035 CrossRef
    8. Daumann, B, Nirschl, H (2008) Assessment of the mixing efficiency of solid mixtures by means of image analysis. Powder Technol 182: pp. 415-423 CrossRef
    9. Daumann, B, Weber, JA, Anlauf, H, Nirschl, H (2011) Discontinuous powder mixing of nanoscale particles. Chem Eng J 167: pp. 377-387 CrossRef
    10. Dreizin, EL (2009) Metal-based reactive nanomaterials. Prog Energy Combust Sci 35: pp. 141-167 CrossRef
    11. Ernst, FO, Buechel, R, Strobel, R, Pratsinis, SE (2008) One-step flame-synthesis of carbon-embedded and -supported platinum clusters. Chem Mater 20: pp. 2117-2123 CrossRef
    12. Ertl, G, Kn枚zinger, H, Sch眉th, F, Weitkamp, J (2008) Handbook of heterogeneous catalysis. WILEY-VCH Verlag, Weinheim CrossRef
    13. Gr枚hn AJ, Eggersdorfer ML, Pratsinis SE, Wegner K (2014) On-line monitoring of primary and agglomerate particle dynamics. J Aerosol Sci 73:1鈥?3. doi:10.1016/j.jaerosci.2014.03.001
    14. Gr枚hn, AJ, Pratsinis, SE, Wegner, K (2012) Fluid-particle dynamics during combustion spray aerosol synthesis of ZrO2. Chem Eng J 191: pp. 491-502 CrossRef
    15. Heine, MC, M盲dler, L, Jossen, R, Pratsinis, SE (2006) Direct measurement of entrainment during nanoparticle synthesis in spray flames. Combust Flame 144: pp. 809-820 CrossRef
    16. Heitor, MV, Moreira, ALN (1993) Thermocouples and sample probes for combustion studies. Prog Energy Combust Sci 19: pp. 259-278 CrossRef
    17. H酶j, M, Pham, DK, Brorson, M, M盲dler, L, Jensen, AD, Grunwaldt, JD (2013) Two-nozzle flame spray pyrolysis (FSP) synthesis of CoMo/Al2O3 hydrotreating catalysts. Catal Lett 143: pp. 386-394 CrossRef
    18. Kammler, HK, M盲dler, L Characterization of fine dry powders. In: Lee, B, Komarneni, S eds. (2005) Chemical processing of ceramics. CRC Press Taylor & Francis Groups, Boca Raton, pp. 233-266
    19. Kammler, HK, Pratsinis, SE, Morrison, PW, Hemmerling, B (2002) Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles. Combust Flame 128: pp. 369-381 CrossRef
    20. Karnezis, PA, Durrant, G, Cantor, B (1998) Characterization of reinforcement distribution in cast Al-alloy/SiCp composites. Mater Charact 40: pp. 97-109 CrossRef
    21. Kim, D, Lee, JS, Barry, CMF, Mead, JL (2007) Microscopic measurement of the degree of mixing for nanoparticles in polymer nanocomposites by TEM images. Microsc Res Tech 70: pp. 539-546 CrossRef
    22. Li, WC, Comotti, M, Sch眉th, F (2006) Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation. J Catal 237: pp. 190-196 CrossRef
    23. M盲dler, L, Kammler, HK, Mueller, R, Pratsinis, SE (2002) Controlled synthesis of nanostructured particles by flame spray pyrolysis. J Aerosol Sci 33: pp. 369-389 CrossRef
    24. Minnermann, M, Grossmann, HK, Pokhrel, S, Thiel, K, Hagelin-Weaver, H, B盲umer, M, M盲dler, L (2013) Double flame spray pyrolysis as a novel technique to synthesize alumina-supported cobalt Fischer鈥揟ropsch catalysts. Catal Today 214: pp. 90-99 CrossRef
    25. Noriler D, Rosebrock CD, M盲dler L, Meier HF, Fritsching U (2014) Influence of atomization and spray parameters on the flame spray process for nanoparticle production. Atom. Sprays 24(6):495鈥?24. doi:10.1615/AtomizSpr.2014008559
    26. Piacentini, M, Strobel, R, Maciejewski, M, Pratsinis, SE, Baiker, A (2006) Flame-made Pt鈥揃a/Al2O3 catalysts: structural properties and behavior in lean-NOx storage-reduction. J Catal 243: pp. 43-56 CrossRef
    27. Rogers, A (1974) Statistical analysis of spatial dispersion: the quadrat method. Pion Ltd, London
    28. Schneider, CA, Rasband, WS, Eliceiri, KW (2012) NIH Image to ImageJ: 25years of image analysis. Nat Methods 9: pp. 671-675 CrossRef
    29. Schulz, H, M盲dler, L, Strobel, R, Jossen, R, Pratsinis, SE, Johannessen, T (2005) Independent control of metal cluster and ceramic particle characteristics during one-step synthesis of Pt/TiO2. J Mater Res 20: pp. 2568-2577 CrossRef
    30. Strobel, R, Pratsinis, SE (2007) Flame aerosol synthesis of smart nanostructured materials. J Mater Chem 17: pp. 4743-4756 CrossRef
    31. Strobel, R, Stark, WJ, M盲dler, L, Pratsinis, SE, Baiker, A (2003) Flame-made platinum/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation. J Catal 213: pp. 296-304 CrossRef
    32. Strobel, R, Krumeich, F, Pratsinis, SE, Baiker, A (2006) Flame-derived Pt/Ba/CexZr1-xO2: influence of support on thermal deterioration and behavior as NOx storage-reduction catalysts. J Catal 243: pp. 229-238 CrossRef
    33. Strobel, R, M盲dler, L, Piacentini, M, Maciejewski, M, Baiker, A, Pratsinis, SE (2006) Two-nozzle flame synthesis of Pt/Ba/Al2O3 for NOx storage. Chem Mater 18: pp. 2532-2537 CrossRef
    34. Suryanarayana, C (2001) Mechanical alloying and milling. Prog Mater Sci 46: pp. 1-184 CrossRef
    35. Teoh, WY, M盲dler, L, Beydoun, D, Pratsinis, SE, Amal, R (2005) Direct (one-step) synthesis of TiO2 and Pt/TiO2 nanoparticles for photocatalytic mineralisation of sucrose. Chem Eng Sci 60: pp. 5852-5861 CrossRef
    36. Teoh, WY, Amal, R, M盲dler, L (2010) Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2: pp. 1324-1347 CrossRef
    37. Tepluchin M, Pham DK, Casapu M, M盲dler L, Kureti S, Grunwaldt J-D (2015) Influence of single- and double-flame spray pyrolysis on the structure of MnOx/[纬]-Al2O3 and FeOx/[纬]-Al2O3 catalysts and their behaviour in CO removal under lean exhaust gas conditions. Catal. Sci. Technol. 5:455鈥?64.doi:10.1039/c4cy00727a
    38. Torabmostaedi, H, Zhang, T, Foot, P, Dembele, S, Fernandez, C (2013) Process control for the synthesis of ZrO2 nanoparticles using FSP at high production rate. Powder Technol. 246: pp. 419-433 CrossRef
    39. Tukey JW (1977) Exploratory data analysis. Addison-Wesley
    40. Vemury, S, Pratsinis, SE (1995) Self-preserving size distributions of agglomerates. J Aerosol Sci 26: pp. 175-185 CrossRef
    41. Wang, Z, Pokhrel, S, Chen, M, Hunger, M, M盲dler, L, Huang, J (2013) Palladium-doped silica鈥揳lumina catalysts obtained from double-flame FSP for chemoselective hydrogenation of the model aromatic ketone acetophenone. J Catal 302: pp. 10-19 CrossRef
    42. Wei, D, Dave, R, Pfeffer, R (2002) Mixing and characterization of nanosized powders: an assessment of different techniques. J Nanopart Res 4: pp. 21-41 CrossRef
    43. Wells, PB (1985) Characterization of the standard platinum/silica catalyst europt-1. Appl. Catal. 18: pp. 259-272 CrossRef
    44. Westbrook, CK, Dryer, FL (1981) Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust Sci Technol 27: pp. 31-43 CrossRef
    45. Zhou, Y, King, DM, Liang, X, Li, J, Weimer, AW (2010) Optimal preparation of Pt/TiO2 photocatalysts using atomic layer deposition. Appl Catal B 101: pp. 54-60 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
The combination of two nanoparticle-producing flame reactors to a double-flame (DF) spray pyrolysis process is an attractive method for the high-temperature gas-phase synthesis of multicompound materials and heterostructures. It allows separate control of particle growth in the individual flames up to the intersection or mixing point where the formation of heterostructures takes place. The effect of mixing of the aerosol streams on the process temperature and product characteristics is investigated based on the example of Pt on TiO2. Temperatures were determined by Fourier-transform infrared spectroscopy and thermocouple measurements along with computational fluid dynamics, while the degree of mixing was investigated based on surface area, Pt-dispersion measurements, and transmission electron microscopy image analyses. The quadrat method in combination with the variation coefficient was used to quantify the uniformity of the Pt cluster distribution on the TiO2 support. For high intersection distances of the two flame jets and small intersection angles, nonuniform mixing of the compounds and the formation of large Pt particles are observed. For small intersection distances and large angles, a uniform Pt distribution was achieved. Based on these findings, process design rules were established which can be transferred to other material systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700