Research on measurement-device-independent quantum key distribution based on an air-water channel
详细信息    查看全文
  • 作者:Yuan-yuan Zhou 周媛媛 ; Xue-jun Zhou 周学军 ; Hua-bin Xu 徐华
  • 刊名:Optoelectronics Letters
  • 出版年:2016
  • 出版时间:November 2016
  • 年:2016
  • 卷:12
  • 期:6
  • 页码:469-472
  • 全文大小:478 KB
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Applied Optics, Optoelectronics and Optical Devices
    Chinese Library of Science
  • 出版者:Tianjin University of Technology, co-published with Springer-Verlag GmbH
  • ISSN:1993-5013
  • 卷排序:12
文摘
A measurement-device-independent quantum key distribution (MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel’s asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700