On the concentration of random multilinear forms and the universality of random block matrices
详细信息    查看全文
  • 作者:Hoi H. Nguyen ; Sean O’Rourke
  • 关键词:15A52 ; 15A63 ; 11B25
  • 刊名:Probability Theory and Related Fields
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:162
  • 期:1-2
  • 页码:97-154
  • 全文大小:1,260 KB
  • 参考文献:1.Bai, Z.D., Silverstein, J., Yin, Y.Q.: A note on the largst eigenvalue of large-dimensional sample covariance matrix. J. Multivar. Anal. 26, 166-68 (1988)View Article MATH MathSciNet
    2.Bai, Z.D., Silverstein, J.: Spectral analysis of large dimensional random matrices. In: Mathematics Monograph Series, vol. 2. Science Press, Beijing (2006)
    3.Bai, Z.D.: Circular law. Ann. Probab. 25, 494-29 (1997)View Article MATH MathSciNet
    4.Benaych-Georges, F., Chapon, F.: Random right eigenvalues of Gaussian quaternionic matrices. Random Matrices Theory Appl. 1 (2012)
    5.Bordenave, C., Chafai, D.: Around the circular law. Probab. Surv. 9, 1-9 (2012)View Article MATH MathSciNet
    6.Costello, K., Tao, T., Vu, V.: Random symmetric matrices are almost surely non-singular. Duke Math. J. 135, 395-13 (2006)View Article MATH MathSciNet
    7.Edelman, A.: The probability that a random real Gaussian matrix has \(k\) real eigenvalues, related distributions, and the circular law. J. Multivar. Anal. 60, 203-32 (1997)View Article MATH MathSciNet
    8.Erd?s, P.: On a lemma of Littlewood and Offord. Bull. Am. Math. Soc. 51, 898-02 (1945)View Article
    9.Ginibre, J.: Statistical ensembles of complex, quaternion and real matrices. J. Math. Phys. 6, 440-49 (1965)View Article MATH MathSciNet
    10.Girko, V.L.: Circular law. Theory Probab. Appl. 29, 694-06 (1984)
    11.Girko, V.L.: The strong circular law, twenty years later, II. Random Oper. Stoch. Equ. 12(3), 255-12 (2004)View Article MATH MathSciNet
    12.Goldsheid, I., Khoruzhenko, B.A.: The Thouless formula for random non-Hermitian Jacobi matrices. Isr. J. Math. 148, 331-46 (2005)View Article MATH MathSciNet
    13.G?tze, F., Tikhomirov, T.: The circular law for random matrices. Ann. Probab. 38(4), 1444-491 (2010)View Article MATH MathSciNet
    14.Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)View Article MATH
    15.Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1991)View Article MATH
    16.Littlewood, J.E., Offord, A.C.: On the number of real roots of a random algebraic equation. III. Rec. Math. Mat. Sbornik N. S. 12, 277-86 (1943)MathSciNet
    17.Mehta, M.L.: Random Matrices and the Statistical Theory of Energy Levels. Academic Press, Dublin (1967)MATH
    18.Mehta, M.L.: Random Matrices, 3rd edn. Elsevier/Academic Press, Amsterdam (2004)MATH
    19.Nguyen, H., O’Rourke, S.: The elliptic law. arXiv:-208.-883 [math.PR]
    20.Nguyen, H.: Inverse Littlewood–Offord problems and the singularity of random symmetric matrices. Duke Math. J. 161(4), 545-86 (2012)View Article MATH MathSciNet
    21.Nguyen, H., Vu, V.: Optimal Littlewood–Offord theorems. Adv. Math. 226(6), 5298-319 (2011)View Article MATH MathSciNet
    22.Nguyen, H., Vu, V.: Random matrices: law of the determinant. Ann. Probab. 42(1), 146-67 (2014)View Article MATH MathSciNet
    23.Nguyen, H., Vu, V.: Small probability, inverse theorems, and applications. Bolyai Soc. Math. Stud. 25, 409-63 (2013)
    24.O’Rourke, S., Renfrew, D.: Low rank perturbations of large elliptic random matrices. arXiv:-309.-326 [math.PR]
    25.Pan, G., Zhou, W.: Circular law, extreme singular values and potential theory. J. Multivar. Anal. 101, 645-56 (2010)View Article MATH MathSciNet
    26.Rudelson, M., Vershynin, R.: The Littlewood–Offord problem and invertibility of random matrices. Adv. Math. 218, 600-33 (2008)View Article MATH MathSciNet
    27.Soshnikov, A.: A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Stat. Phys. 108, 1033-056 (2002)View Article MATH MathSciNet
    28.Tao, T., Vu, V.: From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Am. Math. Soc. (N.S.) 46(3), 377-96 (2009)View Article MATH MathSciNet
    29.Tao, T., Vu, V.: Inverse Littlewood–Offord theorems and the condition number of random matrices. Ann. Math. (2) 169(2), 595-32 (2009)View Article MATH MathSciNet
    30.Tao, T., Vu, V.: On the singularity probability of random Bernoulli matrices. J. Am. Math. Soc. 20, 603-28 (2007)View Article MATH MathSciNet
    31.Tao, T., Vu, V.: Random matrices: the circular law. Commun. Contemp. Math. 10, 261-07 (2008)View Article MATH MathSciNet
    32.Tao, T., Vu, V.: Smooth analysis of the condition number and the least singular value. Math. Comput. 79, 2333-352 (2010)View Article MATH MathSciNet
    33.Tao, T., Vu, V.: Random matrices: universality of ESDs and the circular law. Ann. Probab. 38(5), 2023-065 (2010)View Article MATH MathSciNet
    34.Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206, 127-04 (2011)View Article MATH MathSciNet
    35.Vershynin, R.: Invertibility of symmetric random matrices. Random Struct. Algorithm 44, 135-82 (2014)View Article MATH MathSciNet
    36.Wigner, E.P.: On the distributions of the ro
  • 作者单位:Hoi H. Nguyen (1)
    Sean O’Rourke (2)

    1. Department of Mathematics, The Ohio State University, Columbus, OH, 43210, USA
    2. Department of Mathematics, Yale University, New Haven, CT, 06520, USA
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Probability Theory and Stochastic Processes
    Mathematical and Computational Physics
    Quantitative Finance
    Mathematical Biology
    Statistics for Business, Economics, Mathematical Finance and Insurance
    Operation Research and Decision Theory
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2064
文摘
The circular law asserts that if \({\mathbf {X}}_n\) is a \(n \times n\) matrix with iid complex entries of mean zero and unit variance, then the empirical spectral distribution of \(\frac{1}{\sqrt{n}} {\mathbf {X}}_n\) converges almost surely to the uniform distribution on the unit disk as \(n\) tends to infinity. Answering a question of Tao, we prove the circular law for a general class of random block matrices with dependent entries. The proof relies on an inverse-type result for the concentration of linear operators and multilinear forms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700