On the Bloch–Kato conjecture for elliptic modular forms of square-free level
详细信息    查看全文
  • 作者:Mahesh Agarwal (1)
    Jim Brown (2)
  • 关键词:Bloch–Kato conjecture ; Congruences among automorphic forms ; Galois representations ; Saito–Kurokawa correspondence ; Siegel modular forms ; Special values of $$L$$ L ; functions ; Primary 11F33 ; 11F67 ; Secondary 11F46 ; 11F80
  • 刊名:Mathematische Zeitschrift
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:276
  • 期:3-4
  • 页码:889-924
  • 全文大小:439 KB
  • 参考文献:1. Agarwal, M.: $p$ -adic $L$ -functions for $\text{ GSp }(4) \times \text{ GL }(2)$ . Ph.D. thesis, University of Michigan, Ann Arbor, MI (2007)
    2. Agarwal, M., Brown, J.: Computational evidence for the Bloch–Kato conjecture for elliptic modular forms of square-free level. http://www.ces.clemson.edu/~jimlb/ResearchPapers/BlochKatoCompEvid.pdf. Accessed 17 July 2013
    3. Agarwal, M., Brown, J.: Saito–Kurokawa lifts of square-free level and multiplicity one theorem, 1-1, preprint (2013)
    4. Agarwal, M., Klosin, K.: Yoshida lifts and the Bloch–Kato conjecture for the convolution L-function, 1-9, preprint (2011)
    5. Bloch, S., Kato, K.: $L$ -functions and Tamagawa numbers of motives. In: Cartier, P., et al. (eds.), The Grothendieck Festschrift, vol. 1 of Progress in Mathematics, pp. 333-00. Birkh?user, Boston, MA (1990)
    6. B?cherer, S., Dummigan, N., Schulze-Pillot, R.: Yoshida lifts and Selmer groups 1-7, preprint (2011)
    7. Brown, J.: Saito–Kurokawa lifts and applications to the Bloch–Kato conjecture. Comput. Math. 143(2), 290-22 (2007)
    8. Brown, J.: $L$ -functions on $\text{ GSp }(4) \times \text{ GL }(2)$ and the Bloch–Kato conjecture. Int. J. Number Theory 6(8), 1901-926 (2010) CrossRef
    9. Brown, J.: On the congruence primes of Saito–Kurokawa lifts of odd square-free level. Math. Res. Lett 17(5), 977-91 (2011) CrossRef
    10. Brown, J.: On the cuspidality of pullbacks of Siegel Eisenstein series and applications to the Bloch–Kato conjecture. Int. Math. Res. Notices 7, 1706-756 (2011)
    11. Brown, J.: On the cuspidality of pullbacks of Siegel Eisenstein series to $\text{ Sp }(2m) \times \text{ Sp }(2n)$ . J. Number Theory 131, 106-19 (2011) CrossRef
    12. Chai, C., Faltings, G.: Degeneration of Abelian Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge Band 22, A Series of Modern Surveys in Mathematics. Springer, Berlin (1980)
    13. Darmon, H., Diamond, F., Taylor, R.: Fermat’s Last Theorem, vol. 1 of Current Developments in Mathematics. International Press, Cambridge (1995)
    14. Diamond, F., Flach, M., Guo, L.: The Tamagawa number conjecture of adjoint motives of modular forms. Ann. Sc. école Norm. Sup. 37(4), 663-27 (2004)
    15. Dummigan, N., Stein, W., Watkins, M.: Constructing elements in Shafarevich–Tate groups of modular motives, vol. 303 of London Mathematical Society Lecture Note Series. Cambridge University Press (2003)
    16. Faltings, G.: Crystalline cohomology and $p$ -adic Galois representations. In: Proceedings of JAMI Inaugural Conference. John Hopkins University Press (1989)
    17. Flach, M.: A generalisation of the Cassels–Tate pairing. J. Reine Angew. Math. 412, 113-27 (1990)
    18. Fontaine, J.M.: Sur certains types de représentations $p$ -adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti–Tate. Ann. Math. 115, 529-77 (1982) CrossRef
    19. Fontaine, J.-M., Perrin-Riou, B.: Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions $L$ . In: Motives (Seattle, WA, 1991), vol. 55 of Proceedings of Symposium on Pure Mathematics, pp. 599-06, Providence, RI, American Mathematical Society (1994)
    20. Hida, H.: Theory of $p$ -adic Hecke algebras and Galois representations. Sugaku Expo. 2-, 75-02 (1989)
    21. Kato, K.: $p$ -adic Hodge theory and values of zeta functions of modular forms. Asterisque 295, 117-90 (2004)
    22. Klosin, K.: Congruences among modular forms on $U(2,2)$ and the Bloch–Kato conjecture. Ann. Inst. Fourier 59(1), 81-66 (2009) CrossRef
    23. Langlands, R.: On the functional equations satisfied by Eisenstein series, vol. 544 of Lecture Notes in Mathematics. Springer, Berlin (1976)
    24. Manickam, M., Ramakrishnan, B.: On Shimura, Shintani and Eichler–Zagier correspondences. Trans. Am. Math. Soc. 352, 2601-617 (2000) CrossRef
    25. Manickam, M., Ramakrishnan, B.: On Saito–Kurokawa correspondence of degree two for arbitrary level. J. Ramanujan Math. Soc. 17(3), 149-60 (2002)
    26. Manickam, M., Ramakrishnan, B., Vasudevan, T.C.: On Saito–Kurokawa descent for congruence subgroups. Manuscripta Math. 81, 161-82 (1993) CrossRef
    27. Piatetski-Shapiro, I.I.: On the Saito–Kurokawa lifting. Invent. Math. 71, 309-38 (1983) CrossRef
    28. Pitale, A., Schmidt, R.: Ramanujan type results for Siegel cusp forms of degree 2. J. Ramanujan Math. Soc. 24(1), 87-11 (2009)
    29. Ribet, K.: A modular construction of unramified $p$ -extensions of ${\mathbb{Q}}(\mu _{p})$ . Invent. Math. 34, 151-62 (1976) CrossRef
    30. Rubin, K.: Euler Systems, vol. 147 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (2000)
    31. Schmidt, R.: Iwahori-spherical representations of ${\rm GSp}(4)$ and Siegel modular forms of degree 2 with square-free level. J. Math. Soc. Jpn. 57(1), 259-93 (2005) CrossRef
    32. Schmidt, R.: The Saito–Kurokawa lifting and functoriality. Am. J. Math. 127, 209-40 (2005) CrossRef
    33. Schmidt, R.: On classical Saito–Kurokawa liftings. J. Reine Angew. Math. 604, 211-36 (2007)
    34. Scholl, A.J.: Motives for modular forms. Invent. Math. 100, 419-30 (1990) CrossRef
    35. Shimura, G.: The special values of the zeta functions associated to cusp forms. Commun. Pure Appl. Math. XXIX, 783-04 (1976) CrossRef
    36. Shimura, G.: On Eisenstein series. Duke Math. J. 50, 417-76 (1983) CrossRef
    37. Shimura, G.: Eisenstein series and zeta functions on symplectic groups. Invent. Math. 119, 539-84 (1995) CrossRef
    38. Shimura, G.: Euler products and Eisenstein series, vol. 93 of CBMS. Regional Conference Series in Mathematics. AMS, Providence (1997)
    39. Shintani, T.: On construction of holomorphic cusp forms of half integral weight. Nagoya Math. J. 58, 83-26 (1975)
    40. Skinner, C., Urban, E.: Sur les déformations $p$ -adiques de certaines représentations automorphes. J. Inst. Math. Jussieu 5, 629-98 (2006) CrossRef
    41. Skinner, C., Urban, E.: The Iwasawa main conjectures for $\text{ GL }_2$ . Invent. Math. (2013). doi:10.1007/s00222-013-0448-1
    42. Stevens, G.: $\Lambda $ -adic modular forms of half-integral weight and a $\Lambda $ -adic Shintani lifting. Contemp. Math. 174, 129-51 (1994) CrossRef
    43. Urban, E.: Selmer groups and the Eisenstein–Klingen ideal. Duke Math. J. 106(3), 485-25 (2001) CrossRef
    44. Urban, E.: Sur les représentations $p$ -adiques associées aux représentations cuspidales de $\text{ GSp }_{4/{\mathbb{Q}}}$ . Number 302 in Asterique. Société Mathématique de France, Inst. Henri Poincaré (2005)
    45. Vatsal, V.: Canonical periods and congruence formulae. Duke Math. J. 98(2), 397-19 (1999) CrossRef
    46. Washington, L.: Galois cohomology. In: Cornell, G., Silverman, J., Stevens, G. (eds.) Modular Forms and Fermat’s Last Theorem (Boston, MA, 1995), pp. 101-20. Springer, New York (1997)
    47. Weissauer, R.: Four dimensional Galois representations. Formes automorphes. II. Le cas du groupe $\text{ GSp }(4)$ . Asterique 302, 67-50 (2005)
    48. Wiles, A.: The Iwasawa conjecture for totally real fields. Ann. Math. 131(3), 493-40 (1990) CrossRef
  • 作者单位:Mahesh Agarwal (1)
    Jim Brown (2)

    1. Department of Mathematics and Statistics, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
    2. Department of Mathematical Sciences, Clemson University, Clemson, SC, 29634, USA
  • ISSN:1432-1823
文摘
Let $\kappa \ge 6$ be an even integer, $M$ an odd square-free integer, and $f \in S_{2\kappa -2}(\Gamma _0(M))$ a newform. We prove that under some reasonable assumptions that half of the $\lambda $ -part of the Bloch–Kato conjecture for the near central critical value $L(\kappa ,f)$ is true. We do this by bounding the $\ell $ -valuation of the order of the appropriate Bloch–Kato Selmer group below by the $\ell $ -valuation of algebraic part of $L(\kappa ,f)$ . We prove this by constructing a congruence between the Saito–Kurokawa lift of $f$ and a cuspidal Siegel modular form.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700