Elaborated studies on nano-sized homo-binuclear Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) complexes derived from N2O2 Schiff base, thermal, molecular modeling, drug-likeness, and spectral
详细信息    查看全文
  • 作者:Reem K. Shah ; Khlood S. Abou-Melha…
  • 关键词:Schiff base complexes ; Spectral ; Thermal ; Molecular modeling studies
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:123
  • 期:1
  • 页码:731-743
  • 全文大小:1,058 KB
  • 参考文献:1.Aly HM, Moustafa EM, Nassar MY, Abdelrahman EA. Synthesis and characterization of novel Cu(II) complexes with 3-substituted-4-amino-5-mercapto-1,2,4-triazole Schiff bases: a new route to CuO nanoparticles. J Mol Struct. 2015;1086:223–31.CrossRef
    2.Sharma AK, Chandra S. Complexation of nitrogen and sulphur donor Schiff’s base ligand to Cr(III) and Ni(II) metal ions: synthesis, spectroscopic and antipathogenic studies. Spectrochim Acta A. 2011;78:337–42.CrossRef
    3.Wikins PC, Berg JM. Inorganic chemistry in biology. Oxford: Oxford University Press; 1997.
    4.Abo-Aly MM, Salem AM, Sayed MA, Abdel Aziz AA. Spectroscopic and structural studies of the Schiff base 3-methoxy-N-salicylidene-o-amino phenol complexes with some transition metal ions and their antibacterial, antifungal activities. Spectrochim Acta Part A Mol Biomol Spectrosc. 2015;136:993–1000.CrossRef
    5.Nagesh GY, Mruthyunjayaswamy BHM. Synthesis, characterization and biological relevance of some metal (II) complexes with oxygen, nitrogen and oxygen (ONO) donor Schiff base ligand derived from thiazole and 2-hydroxy-1-naphthaldehyde. J Mol Struct. 2015;1085:198–206.CrossRef
    6.Gavey EL, Pilkington M. Coordination complexes of 15-membered pentadentate aza, oxoaza and thiaaza Schiff base macrocycles “Old Complexes Offer New Attractions”. Coord Chem Rev. 2015;296:125–52.CrossRef
    7.Liu K, Shi W, Cheng P. Toward heterometallic single-molecule magnets: synthetic strategy, structures and properties of 3d–4f discrete complexes. Coord Chem Rev. 2015;289–290:74–122.CrossRef
    8.Samanta B, Chakraborty J, Shit S, Batten SR, Jensen P, Masuda JD, Mitra S. Synthesis, characterisation and crystal structures of a few coordination complexes of nickel(II), cobalt(III) and zinc(II) with N′-[(2-pyridyl)methylene]salicyloylhydrazone Schiff base. Inorg Chim Acta. 2007;360:2471–84.CrossRef
    9.Kozlyuk N, Lopez T, Roth P, Acquaye JH. Synthesis and the characterization of Schiff-base copper complexes: reactivity with DNA, 4-NPP and BNPP. Inorg Chim Acta. 2015;428:176–84.CrossRef
    10.Vijesh AM, Isloor AM, Shetty P, Shetty P, Sundershan S, Fun HK. New pyrazole derivatives containing 1,2,4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents. Eur J Med Chem. 2013;62:410–5.CrossRef
    11.Keypour H, Khanmohammadi H, Wainwrightand KP, Taylor MR. Synthesis, crystal structure, NMR and ab initio molecular-orbital studies of some magnesium(II) macrocyclic Schiff-base complexes, with two 2-aminoethyl pendant arms. Inorg Chim Acta. 2004;357:1283–91.CrossRef
    12.Bagihalli GB, Avaji PG, Patil SA, Badamiet PS. Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1,2,4-triazole Schiff bases. Eur J Med Chem. 2008;43:2639–49.CrossRef
    13.Subramanian VK, Ganesan M, Rajagopal S, Ramaraj R. Iron(III)salen complexes as enzyme models: mechanistic study of oxo(salen)iron complexes oxygenation of organic sulfides. J Org Chem. 2002;67:1506–14.CrossRef
    14.Bedfort RB, Bruce DW, Frost RM, Goodby JW, Hirdb M. Iron(III) salen-type catalysts for the cross-coupling of aryl Grignards with alkyl halides bearing β-hydrogens. Chem Commun 2004; 24:2822–23.
    15.Bryliakov KP, Talsi EP, Evgenii P. Evidence for the formation of an iodosylbenzene(salen)iron active intermediate in a (salen)iron(III)-catalyzed asymmetric sulfide oxidation. Angew Chem Int Ed. 2004;43:5228–30.CrossRef
    16.Bagherzadeh M, Amini M. Synthesis, characterization and catalytic study of a novel iron(III) tridentate Schiff base complex in sulfide oxidation by UHP. Inorg Chem Commun. 2009;12:21–5.CrossRef
    17.Khedr AM, Marwani HM. Synthesis, spectral, thermal analyses and molecular modeling of bioactive Cu(II)-complexes with 1,3,4-thiadiazole Schiff base derivatives: their catalytic effect on the cathodic reduction of oxygen. Int J Electrochem Sci. 2012;7:10074–93.
    18.Zhang M-T, Chen Z, Kang P, Meyer TJ. Electrocatalytic water oxidation with copper(II) polypeptide complex. J Am Chem Soc. 2013;135:2048–51.CrossRef
    19.Ismail TM, Khedr AM, Abu-El-Wafa SM, Issa RM. Mononuclear and homobinuclear vanadium(IV), chromium(III), molybdenum(III), and uranium(VI) chelates with ortho-cresolphthalein complexone. J Coord Chem. 2004;57:1179–90.CrossRef
    20.Vogel AI. Text book of quantitative inorganic analysis. London: Longman; 1986.
    21.Bain GA, Berry JF. Diamagnetic corrections and Pascal’s constants. J Chem Educ. 2008;85:532–8.CrossRef
    22.Wu X, Ray AK. Density-functional study of water adsorption on the PuO2(110) surface. Phys Rev B. 2002;65:85403.CrossRef
    23.Modeling and Simulation Solutions for Chemicals and Materials Research, Materials Studio (Version 5.0), Accelrys software Inc., San Diego. http://​www.​accelrys.​com . 2009.
    24.Hehre WJ, Radom L, Schlyer PVR. Ab initio molecular orbital theory. New York: Wiley; 1986.
    25.Kessi A, Delley B. Density functional crystal vs. cluster models as applied to zeolites. Int J Quantum Chem. 1998;68:135–44.CrossRef
    26.Hammer B, Hansen LB, Nørskov JK. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B. 1999;59:7413.CrossRef
    27.Matveev A, Staufer M, Mayer M, Rösch N. Density functional study of small molecules and transition-metal carbonyls using revised PBE functionals. Int J Quantum Chem. 1999;75:863–73.CrossRef
    28.Geary W. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. J Coord Chem Rev. 1971;7:81–122.CrossRef
    29.Refat MS. Synthesis and characterization of norfloxacin-transition metal complexes (group 11, IB): spectroscopic, thermal, kinetic measurements and biological activity. Spectrochim Acta A. 2007;68:1393–405.CrossRef
    30.El-Metwally NM, Arafa R, El-Ayaan U. Molecular modeling, spectral, and biological studies of 4-formylpyridine-4 N-(2-pyridyl) thiosemicarbazone (HFPTS) and its Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Cd(II), Hg(II), and UO2(II) complexes. J Therm Anal Calorim. 2014;8:2357–67.CrossRef
    31.El-Ayaan U, Youssef MM, Al-Shihry S. Mn(II), Co(II), Zn(II), Fe(III) and U (VI) complexes of 2-acetylpyridine 4N-(2-pyridyl) thiosemicarbazone (HAPT): structural, spectroscopic and biological studies. J Mol Struct. 2009;936:213–9.CrossRef
    32.Siddiqi KS, Kureshy RI, Hkan NH, Tabassum S, Zaidi SAA. Characterization and toxicity of lanthanide complexes with nitrogen- and sulphur-containing Schiff bases. Inorg Chim Acta. 1988;151:95–100.CrossRef
    33.Tabassum S, Siddiqi KS, Khan NH, Kureshy RI, Zaidi SAA. Studies on barbituric acid complexes of lanthanide ions. Ind J Chem. 1987;26A:523–30.
    34.Abu-Melha KS, El-Metwally NM. Synthesis and spectral characterization of some investigated thiocarbohydrazone binuclear complexes with an illustrated EPR study for d1 complexes. Transit Met Chem. 2007;32:828.CrossRef
    35.Gupta LK, Bansal U, Chandra S. Spectroscopic approach in the characterization of the copper(II) complexes of isatin-3,2′-quinolyl-hydrazones and their adducts. Spectrochim Acta A. 2006;65:463–6.CrossRef
    36.El-Metwally NM, El-Asmy AA. Chelating activity of bis(diacetylmonoxime)thiocarbohydrazone towards VO2+, Co(II), Ni(II), Cu(II) and Pt(IV) ions. J Coord Chem. 2006;59:1591–601.CrossRef
    37.Latheef L, Maliyeckal R, Kurup P. Spectral and structural studies of nickel(II) complexes of salicylaldehyde 3-azacyclothiosemicarbazones. Polyhedron. 2008;27:35–43.CrossRef
    38.Lever ABP. Inorganic electronic spectroscopy. Amsterdam: Elsevier; 1986.
    39.Liu H, Wang H, Gao F, Niu D, Lu Z. Self-assembly of copper(II) complexes with substituted aroylhydrazones and monodentate N-heterocycles: synthesis, structure and properties. J Coord Chem. 2007;60:2671–8.CrossRef
    40.Singh DP, Kumar R, Malik V, Tyagi P. Synthesis and characterization of complexes of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with macrocycle 3,4,11,12-tetraoxo-1,2,5,6,9,10,13,14-octaaza-cyclohexadeca-6,8,14,16-tetraene and their biological screening. Transit Met Chem. 2007;32:1051–5.CrossRef
    41.Cotton FA, Wilkinson G, Murillo CA. Advanced inorganic chemistry. New York: Wiley; 1999.
    42.Fahem AA. Comparative studies of mononuclear Ni(II) and UO2(II) complexes having bifunctional coordinated groups: synthesis, thermal analysis, X-ray diffraction, surface morphology studies and biological evaluation. Spectrochim Acta A. 2012;88:10–22.CrossRef
    43.Shahrjerdi A, Davarani SSH, Najafi E, Amini MM. Sonoelectrochemical synthesis of a new nano lead(II) complex with quinoline-2-carboxylic acid ligand: a precursor to produce pure phase nano-sized lead(II) oxide. Ultrason Sonochem. 2015;22:382–90.CrossRef
    44.Cullity BD. Elements of X–ray diffraction. 3rd ed. Reading, MA: Addison-Wesley; 1993.
    45.Cullity BD. Elements of X-ray diffraction. 2nd ed. Reading, MA: Addison-Wesley; 1978.
    46.Pearson RG. Absolute electronegativity and hardness: applications to organic chemistry. J Org Chem. 1989;54:1423–30.CrossRef
    47.Padmanabhan J, Parthasarathi R, Subramanian V, et al. Electrophilicity-based charge transfer descriptor. J Phys Chem A. 2007;111:1358–61.CrossRef
    48.Sagdinc S, Köksoy B, Kandemirli F, Bayari SH. Theoretical and spectroscopic studies of 5- fluoro-isatin-3-(N-benzylthiosemicarbazone) and its zinc(II) complex. J Mol Struct. 2009;917:63–70.CrossRef
    49.Yousef TA, Abu El-Reash GM, El-Morshedy RM. Quantum chemical calculations, experimental investigations and DNA studies on (E)-2-((3-hydroxynaphthalen-2-yl)methylene)-N-(pyridin-2-yl)hydrazinecarbothioamide and its Mn(II), Ni(II), Cu(II), Zn(II)and Cd(II) complexes. Polyhedron. 2012;45:71–85.CrossRef
    50.Yousef TA, Abu El-Reash GM, El-Morshedy RM. Structural, spectral analysis and DNA studies of heterocyclic thiosemicarbazone ligand and its Cr(III), Fe(III), Co(II) Hg(II), and U(VI) complexes. J Mol Struct. 2013;1045:145–59.CrossRef
    51.Linert W, Taha A, Co-ordination of solvent molecules to square-planar mixed-ligand nickel(II) complexes: a thermodynamic and quantum-mechanical study. J Chem Soc Dalton Trans. 1994; 7:1091–95.
    52.Okulik N, Jubert AH. Theoretical analysis of the reactive sites of non-steroidal anti inflammatory drugs. Internet Electron J Mol Des. 2005;4:17–30.
    53.Yousef TA, Rakha TH, El-Ayaan U, Abu El-Reash GM. Synthesis, spectroscopic characterization and thermal behavior of metal complexes formed with (Z)-2-oxo-2-(2-(2-oxoindolin-3-ylidene)hydrazinyl)-N-phenylacetamide (H2OI). J Mol Struct. 2012;1007:146–57.CrossRef
    54.Yousef TA, Abu El-Reash GM, Rakha TH, El-Ayaan U. First row transition metal complexes of (E)-2-(2-(2-hydroxybenzylidene) hydrazinyl)-2-oxo-N-phenylacetamide complexes. Spectrochim Acta A. 2011;83:271–8.CrossRef
    55.Yousef TA, El-Gammal OA, Ahmed SF, Abu El-Reash GM. Structural, DFT and biological studies on Co(II) complexes of semi and thiosemicarbazide ligands derived from diketo hydrazide. J Mol Struct. 2014;1076:227–37.CrossRef
    56.Yousef TA, El-Gammal OA, Ahmed SF, Abu El-Reash GM. Synthesis, biological and comparative DFT studies on Ni(II) complexes of NO and NOS donor ligands. Spectrochim Acta A. 2015;135:690–703.CrossRef
    57.Yousef TA, Abu El-Reash GM, El-Gammal OA, et al. Structural, DFT and biological studies on Cu(II) complexes of semi and thiosemicarbazide ligands derived from diketo hydrazide. Polyhedron. 2014;81:749–63.CrossRef
  • 作者单位:Reem K. Shah (1)
    Khlood S. Abou-Melha (2)
    Fawaz A. Saad (1)
    Tarek Yousef (3) (4)
    Gamil A. A. Al-Hazmi (2) (5)
    Marwa G. Elghalban (1) (6)
    Abdalla M. Khedr (1) (7)
    Nashwa El-Metwaly (1) (6)

    1. Chemistry Department, College of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
    2. Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha, Saudi Arabia
    3. Department of Chemistry, Science College, Al Imam Mohammad Bin Saud Islamic University, (IMSIU), PO Box 90950, Riyadh, 11623, Saudi Arabia
    4. Department of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medicolegal Organization, Ministry of Justice, Cairo, Egypt
    5. Chemistry Department, Faculty of Applied Sciences, Taiz University, PO Box 82, Taiz, Yemen
    6. Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
    7. Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
A series of new homo-binuclear nano Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) complexes were synthesized using a Schiff base ligand derived by condensation of p-phenylenediamine with 2-hydroxy-1-naphthaldehyde. The prepared complexes were characterized using elemental, thermal analyses, FTIR, 1HNMR, 13CNMR, UV–Vis, XRD, SEM, molar conductance, and magnetic moment measurements. FTIR spectral studies revealed the interaction of the ligand as bi-negative tetra-dentate towards Mn(II) and Fe(III) atoms, whereas the ligand molecule coordinates in neutral tetra-dentate mode towards Co(II), Ni(II), and Cu(II) ions. The geometries proposed are mainly octahedral configuration surrounds the central atoms referring to the electronic spectral data and magnetic measurements. The calculations abstracted from XRD patterns propose the nano-sized complexes. The SEM images show the nano-sized appearance of the particles except for the Ni(II)-complex. Thermo-gravimetric analysis was used to ensure the nature of the presence of solvent molecules attaching to the complexes. Molecular modeling was performed to assert the structural formula proposed for the ligand and some of its complexes. Also, drug-likeness was theoretically estimated to display the probable biological activity of the free ligand through a theoretical comparison with known drugs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700